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Yocto Project and OpenEmbedded system development training

▶ These slides are the training materials for Bootlin’s Yocto
Project and OpenEmbedded system development training course.

▶ If you are interested in following this course with an experienced
Bootlin trainer, we offer:

• Public online sessions, opened to individual registration. Dates
announced on our site, registration directly online.

• Dedicated online sessions, organized for a team of engineers
from the same company at a date/time chosen by our customer.

• Dedicated on-site sessions, organized for a team of engineers
from the same company, we send a Bootlin trainer on-site to
deliver the training.

▶ Details and registrations:
https://bootlin.com/training/yocto

▶ Contact: training@bootlin.com
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Bootlin introduction

▶ Engineering company
• In business since 2004
• Before 2018: Free Electrons

▶ Team based in France and Italy
▶ Serving customers worldwide
▶ Highly focused and recognized expertise

• Embedded Linux
• Linux kernel
• Embedded Linux build systems

▶ Strong open-source contributor
▶ Activities

• Engineering services
• Training courses

▶ https://bootlin.com
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Bootlin engineering services
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Bootlin training courses
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Bootlin, an open-source contributor

▶ Strong contributor to the Linux kernel
• In the top 30 of companies contributing to Linux worldwide
• Contributions in most areas related to hardware support
• Several engineers maintainers of subsystems/platforms
• 8000 patches contributed
• https://bootlin.com/community/contributions/kernel-contributions/

▶ Contributor to Yocto Project
• Maintainer of the official documentation
• Core participant to the QA effort

▶ Contributor to Buildroot
• Co-maintainer
• 5000 patches contributed

▶ Significant contributions to U-Boot, OP-TEE, Barebox, etc.
▶ Fully open-source training materials
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Bootlin on-line resources

▶ Website with a technical blog:
https://bootlin.com

▶ Engineering services:
https://bootlin.com/engineering

▶ Training services:
https://bootlin.com/training

▶ Twitter:
https://twitter.com/bootlincom

▶ LinkedIn:
https://www.linkedin.com/company/bootlin

▶ Elixir - browse Linux kernel sources on-line:
https://elixir.bootlin.com

Icon by Freepik, Flaticon
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Generic course information

Generic course
information
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Three supported hardware platforms

Three variants for this course, each using a different hardware platform.

Beaglebone Black
https://bootlin.com/doc/

training/yocto/

STM32MP157D-DK1
Discovery

https://bootlin.com/doc/

training/yocto-stm32/

BeaglePlay
https://bootlin.com/doc/

training/yocto-beagleplay/
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Shopping list: BeagleBone Black Wireless variant

▶ Beaglebone Black or Beaglebone Black Wireless, USB-A to
micro B power cable included
https://www.mouser.fr/ProductDetail/BeagleBoard-by-GHI/BBBWL-SC-

562?qs=k%2Fsw%252B3Yi%2FUbELBjXQpiBUQ%3D%3D

▶ USB Serial Cable - 3.3 V - female ends (for serial console)
https://www.olimex.com/Products/Components/Cables/USB-Serial-Cable/USB-SERIAL-F/

▶ Nintendo Nunchuk with UEXT connector
https://www.olimex.com/Products/Modules/Sensors/MOD-WII/MOD-Wii-UEXT-NUNCHUCK/

▶ Breadboard jumper wires - Male ends (to connect to
Nunchuk) https://www.olimex.com/Products/Breadboarding/JUMPER-WIRES/JW-110x10/

▶ Micro SD card with 8 GB capacity
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Shopping list: STM32MP1 Discovery Kit variant

▶ STMicroelectronics STM32MP157D-DK1 Discovery kit
https://www.st.com/en/evaluation-tools/stm32mp157d-dk1.html#sample-buy

▶ USB-C cable for the power supply
▶ USB-A to micro B cable for the serial console
▶ RJ45 cable for networking
▶ Nintendo Nunchuk with UEXT connector

https://www.olimex.com/Products/Modules/Sensors/MOD-WII/MOD-Wii-UEXT-NUNCHUCK/

▶ Breadboard jumper wires - Male ends
https://www.olimex.com/Products/Breadboarding/JUMPER-WIRES/JW-110x10/

▶ Micro SD card with 8 GB capacity
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Shopping list: BeaglePlay variant

▶ BeaglePlay https://www.mouser.com/ProductDetail/BeagleBoard-by-Seeed-

Studio/102110762?qs=amGC7iS6iy%252BiSone%2FBpwhg%3D%3D

▶ USB-C cable for the power supply
▶ USB Serial Cable - 3.3 V - female ends (for serial console)

https://www.olimex.com/Products/Components/Cables/USB-Serial-Cable/USB-SERIAL-F/

▶ Nintendo Nunchuk with UEXT connector
https://www.olimex.com/Products/Modules/Sensors/MOD-WII/MOD-Wii-UEXT-NUNCHUCK/

▶ Breadboard jumper wires - Male ends (to connect to
Nunchuk) https://www.olimex.com/Products/Breadboarding/JUMPER-WIRES/JW-110x10/

▶ Micro SD card with 8 GB capacity

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/325

https://www.mouser.com/ProductDetail/BeagleBoard-by-Seeed-Studio/102110762?qs=amGC7iS6iy%252BiSone%2FBpwhg%3D%3D
https://www.mouser.com/ProductDetail/BeagleBoard-by-Seeed-Studio/102110762?qs=amGC7iS6iy%252BiSone%2FBpwhg%3D%3D
https://www.olimex.com/Products/Components/Cables/USB-Serial-Cable/USB-SERIAL-F/
https://www.olimex.com/Products/Modules/Sensors/MOD-WII/MOD-Wii-UEXT-NUNCHUCK/
https://www.olimex.com/Products/Breadboarding/JUMPER-WIRES/JW-110x10/


Supported hardware

BeagleBone Black or BeagleBone Black Wireless, from BeagleBoard.org
▶ Texas Instruments AM335x (ARM Cortex-A8 CPU)
▶ SoC with 3D acceleration, additional processors (PRUs) and lots of

peripherals.
▶ 512 MB of RAM
▶ 4 GB of on-board eMMC storage
▶ USB host and USB device, microSD, micro HDMI
▶ WiFi and Bluetooth (wireless version), otherwise Ethernet
▶ 2 x 46 pins headers, with access to many expansion buses (I2C, SPI, UART

and more)
▶ A huge number of expansion boards, called capes. See

https://elinux.org/Beagleboard:BeagleBone_Capes.
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Supported hardware

Discovery Kits from STMicroelectronics: STM32MP157A-DK1, STM32MP157D-DK1,
STM32MP157C-DK2 or STM32MP157F-DK2
▶ STM32MP157 (Dual Cortex-A7 + Cortex-M4) CPU

from STMicroelectronics
▶ 512 MB DDR3L RAM
▶ Gigabit Ethernet port
▶ 4 USB 2.0 host ports, 1 USB-C OTG port
▶ 1 Micro SD slot
▶ On-board ST-LINK/V2-1 debugger
▶ Misc: buttons, LEDs, audio codec
▶ LCD touchscreen (DK2 only) DK1 Discovery Kit
Board and CPU documentation, design files, software: A-DK1, D-DK1, C-DK2, F-DK2
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Training quiz and certificate

▶ You have been given a quiz to test your knowledge on the topics covered by the
course. That’s not too late to take it if you haven’t done it yet!

▶ At the end of the course, we will submit this quiz to you again. That time, you
will see the correct answers.

▶ It allows Bootlin to assess your progress thanks to the course. That’s also a kind
of challenge, to look for clues throughout the lectures and labs / demos, as all the
answers are in the course!

▶ Another reason is that we only give training certificates to people who achieve at
least a 50% score in the final quiz and who attended all the sessions.
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Participate!

During the lectures...
▶ Don’t hesitate to ask questions. Other people in the audience may have similar

questions too.
▶ Don’t hesitate to share your experience too, for example to compare Linux with

other operating systems you know.
▶ Your point of view is most valuable, because it can be similar to your colleagues’

and different from the trainer’s.
▶ In on-line sessions

• Please always keep your camera on!
• Also make sure your name is properly filled.
• You can also use the ”Raise your hand” button when you wish to ask a question but

don’t want to interrupt.
▶ All this helps the trainer to engage with participants, see when something needs

clarifying and make the session more interactive, enjoyable and useful for everyone.
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Collaborate!

As in the Free Software and Open Source community, collaboration
between participants is valuable in this training session:
▶ Use the dedicated Matrix channel for this session to add

questions.
▶ If your session offers practical labs, you can also report issues,

share screenshots and command output there.
▶ Don’t hesitate to share your own answers and to help others

especially when the trainer is unavailable.
▶ The Matrix channel is also a good place to ask questions outside

of training hours, and after the course is over.
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Practical lab - Training Setup

Prepare your lab environment
▶ Download and extract the lab archive
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Introduction to Embedded Linux

Introduction to
Embedded Linux
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Simplified Linux system architecture
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Overall Linux boot sequence
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Embedded Linux work

▶ BSP work: porting the bootloader and Linux kernel, developing Linux device
drivers.

▶ system integration work: assembling all the user space components needed for
the system, configure them, develop the upgrade and recovery mechanisms, etc.

▶ application development: write the company-specific applications and libraries.
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Complexity of user space integration
ALL
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System integration: several possibilities

Pros Cons
Building everything manually Full flexibility

Learning experience
Dependency hell
Need to understand a lot of details
Version compatibility
Lack of reproducibility

Binary distribution
Debian, Ubuntu, Fedora, etc.

Easy to create and extend Hard to customize
Hard to optimize (boot time, size)
Hard to rebuild the full system from source
Large system
Uses native compilation (slow)
No well-defined mechanism to generate an
image
Lots of mandatory dependencies
Not available for all architectures

Build systems
Buildroot, Yocto, PTXdist, etc.

Nearly full flexibility
Built from source: customization and op-
timization are easy
Fully reproducible
Uses cross-compilation
Have embedded specific packages not nec-
essarily in desktop distros
Make more features optional

Not as easy as a binary distribution
Build time
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Embedded Linux build system: principle

▶ Building from source → lot of flexibility
▶ Cross-compilation → leveraging fast build machines
▶ Recipes for building components → easy
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Embedded Linux build system: tools

▶ A wide range of solutions: Yocto/OpenEmbedded, PTXdist, Buildroot,
OpenWRT, and more.

▶ Today, two solutions are emerging as the most popular ones
• Yocto/OpenEmbedded

Builds a complete Linux distribution with binary packages. Powerful, but somewhat
complex, and quite steep learning curve.

• Buildroot
Builds a root filesystem image, no binary packages. Much simpler to use, understand
and modify.
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Yocto Project and Poky reference system overview

Yocto Project and Poky
reference system
overview
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Yocto Project and Poky reference system overview

The Yocto Project overview
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About

▶ The Yocto Project is an open source collaboration project that allows to build
custom embedded Linux-based systems.

▶ Established by the Linux Foundation in 2010 and still managed by one of its
fellows: Richard Purdie.
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Yocto: principle

▶ Yocto always builds binary packages (a “distribution”)
▶ The final root filesystem is generated from the package feed
▶ The big picture is way more complex
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Lexicon: bitbake

In Yocto / OpenEmbedded, the build engine is implemented by the bitbake program
▶ bitbake is a task scheduler, like make

▶ bitbake parses text files to know what it has to build and how
▶ It is written in Python (need Python 3 on the development host)
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Lexicon: recipes

▶ The main kind of text file parsed by bitbake is
recipes, each describing a specific software
component

▶ Each Recipe describes how to fetch and build a
software component: e.g. a program, a library
or an image

▶ They have a specific syntax
▶ bitbake can be asked to build any recipe,

building all its dependencies automatically
beforehand
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Lexicon: tasks

▶ The build process implemented by a recipe is
split in several tasks

▶ Each task performs a specific step in the build
▶ Examples: fetch, configure, compile, package
▶ Tasks can depend on other tasks (including on

tasks of other recipes)
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Lexicon: metadata and layers

▶ The input to bitbake is collectively called metadata
▶ Metadata includes configuration files, recipes, classes and include files
▶ Metadata is organized in layers, which can be composed to get various

components
• A layer is a set of recipes, configurations files and classes matching a common

purpose
For Texas Instruments board support, the meta-ti-bsp layer is used

• Multiple layers are used for a project, depending on the needs
▶ openembedded-core is the core layer

• All other layers are built on top of openembedded-core
• It supports the ARM, MIPS (32 and 64 bits), PowerPC, RISC-V and x86 (32 and 64

bits) architectures
• It supports QEMU emulated machines for these architectures
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Lexicon: Poky

▶ The word Poky has several meanings
▶ Poky is a git repository that is assembled from other git repositories: bitbake,

openembedded-core, yocto-docs and meta-yocto
▶ poky is the reference distro provided by the Yocto Project
▶ meta-poky is the layer providing the poky reference distribution
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The Yocto Project lexicon
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The Yocto Project lexicon

▶ The Yocto Project is not used as a finite set of layers and tools.
▶ Instead, it provides a common base of tools and layers on top of which custom

and specific layers are added, depending on your target.
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Example of a Yocto Project based BSP

▶ To build images for a BeagleBone Black, we need:
• The Poky reference system, containing all common recipes and tools.
• The meta-ti-bsp layer, a set of Texas Instruments specific recipes.

▶ All modifications are made in your own layer. Editing Poky or any other
third-party layer is a no-go!

▶ We will set up this environment in the lab.
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Yocto Project and Poky reference system overview

The Poky reference system overview
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Getting the Poky reference system

▶ All official projects part of the Yocto Project are available at
https://git.yoctoproject.org/

▶ To download the Poky reference system:
git clone -b kirkstone https://git.yoctoproject.org/git/poky

▶ A new version is released every 6 months, and maintained for 7 months
▶ LTS versions are maintained for 4 years, and announced before their release.
▶ Each release has a codename such as kirkstone or honister, corresponding to a

release number.
• A summary can be found at https://wiki.yoctoproject.org/wiki/Releases
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Poky
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Poky source tree 1/2

bitbake/ Holds all scripts used by the bitbake command. Usually matches the
stable release of the BitBake project.

documentation/ All documentation sources for the Yocto Project documentation. Can
be used to generate nice PDFs.

meta/ Contains the OpenEmbedded-Core metadata.
meta-skeleton/ Contains template recipes for BSP and kernel development.
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Poky source tree 2/2

meta-poky/ Holds the configuration for the Poky reference distribution.
meta-yocto-bsp/ Configuration for the Yocto Project reference hardware board

support package.
LICENSE The license under which Poky is distributed (a mix of GPLv2 and MIT).

oe-init-build-env Script to set up the OpenEmbedded build environment. It will create
the build directory.

scripts/ Contains scripts used to set up the environment, development tools,
and tools to flash the generated images on the target.
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Documentation

▶ Documentation for the current sources, compiled as a ”mega manual”, is available
at: https://docs.yoctoproject.org/singleindex.html

▶ Variables in particular are described in the variable glossary:
https://docs.yoctoproject.org/genindex.html

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 45/325

https://docs.yoctoproject.org/singleindex.html
https://docs.yoctoproject.org/genindex.html


Using Yocto Project - basics

Using Yocto Project -
basics
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Using Yocto Project - basics

Environment setup
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Environment setup

▶ All Poky files are left unchanged when building a custom image.
▶ Specific configuration files and build repositories are stored in a separate build

directory.
▶ A script, oe-init-build-env, is provided to set up the build directory and the

environment variables (needed to be able to use the bitbake command for
example).
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oe-init-build-env

▶ Modifies the environment: has to be sourced!
▶ Adds environment variables, used by the build engine.
▶ Allows you to use commands provided in Poky.
▶ source ./oe-init-build-env [builddir]

▶ Sets up a basic build directory, named builddir if it is not found. If not provided,
the default name is build.
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The initial build/ directory

▶ The oe-init-build-env script creates the build directory with only one
subdirectory in it:

conf Configuration files. Image specific and layer configuration.
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Exported environment variables

BUILDDIR Absolute path of the build directory.
PATH Contains the directories where executable programs are located.

Absolute paths to scripts/ and bitbake/bin/ are prepended.
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Available commands

bitbake The main build engine command. Used to perform tasks on available
recipes (download, configure, compile…).

bitbake-* Various specific commands related to the BitBake build engine.
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Using Yocto Project - basics

Configuring the build system
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The build/conf/ directory

▶ The conf/ directory in the build one holds two mandatory build-specific
configuration files:
bblayers.conf Explicitly list the layers to use.

local.conf Set up the configuration variables relative to the current user for the
build. Configuration variables can be overridden there.

▶ Additional optional configuration files can be used:
site.conf Similar to local.conf but intended to be used for site-specific

settings, such as network mirrors and CPU/memory resource usage
limits.
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Configuring the build

The conf/local.conf configuration file holds local user configuration variables:
▶ BB_NUMBER_THREADS: How many tasks BitBake should perform in parallel.

Defaults to the number of CPU threads on the system.
▶ PARALLEL_MAKE: How many processes should be used when compiling. Defaults

to the number of CPU threads on the system.
▶ MACHINE: The machine the target is built for, e.g. beaglebone.
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Using Yocto Project - basics

Building an image
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Compilation

▶ The compilation is handled by the BitBake build engine.
▶ Usage: bitbake [options] [recipename/target ...]

▶ To build a target: bitbake [target]
▶ Building a minimal image: bitbake core-image-minimal

• This will run a full build for the selected target.
▶ The oe-init-build-env script lists some more example targets
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The build/ directory after the build 1/2

conf/ Configuration files, as before, not touched by the build.
downloads/ Downloaded upstream tarballs of the recipes used in the builds.

sstate-cache/ Shared state cache. Used by all builds.
tmp/ Holds all the build system outputs.
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The build/ directory after the build 2/2

tmp/work/ Set of specific work directories, split by architecture. They are used to
unpack, configure and build the packages. Contains the patched sources,
generated objects and logs.

tmp/sysroots/ Shared libraries and headers used to compile applications for the target
but also for the host.

tmp/deploy/ Final output of the build.
tmp/deploy/images/ Contains the complete images built by the OpenEmbedded build

system. These images are used to flash the target.
tmp/buildstats/ Build statistics for all packages built (CPU usage, elapsed time, host,

timestamps…).
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Practical lab - First Yocto build

▶ Download the sources
▶ Set up the environment
▶ Configure the build
▶ Build an image
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Using Yocto Project - advanced usage

Using Yocto Project -
advanced usage
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Advanced build usage and configuration

▶ Variable operators and overrides.
▶ Select package variants.
▶ Manually add packages to the generated image.
▶ Run specific tasks with BitBake.
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A little reminder

▶ A Recipe describes how to fetch, configure, compile and install a software
component (application, library, …).

▶ These tasks can be run independently (if their dependencies are met).
▶ All the available packages in the project layer are not selected by default to be

built and included in the images.
▶ Some packages may provide the same functionality, e.g. OpenSSH and Dropbear.
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Using Yocto Project - advanced usage

Variables
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Overview

▶ The OpenEmbedded build system uses configuration variables to hold information.
▶ Variable names are in upper-case by convention, e.g. CONF_VERSION
▶ Variable values are strings
▶ To make configuration easier, it is possible to prepend, append or define these

variables in a conditional way.
▶ Variables defined in Configuration Files have a global scope

• Files ending in .conf

▶ Variables defined in Recipes have a local scope
• Files ending in .bb, .bbappend and .bbclass

▶ Recipes can also access the global scope
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Operators: basic assignment

▶ VAR = "value" simply assigns a value
▶ Re-assigning overwrites variable value

VAR = "this"
VAR = "that"

Result: VAR = "that"

▶ Newlines need to be escaped (this does not apply to functions)

LIST = "this \
and that"

▶ Variable assignments can contain expansion of other variables

COLOUR = "blue"
SKY = "the sky is ${COLOUR}"
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Operators: immediate expansion

▶ With =, expansion happens when the variable is used
▶ Use := for immediate expansion

COLOUR = "blue"
SKY = "the sky is ${COLOUR}"
COLOUR = "grey"
PHRASE = "Look, ${SKY}"

Result:
PHRASE = "Look, the sky is grey"

COLOUR = "blue"
SKY := "the sky is ${COLOUR}"
COLOUR = "grey"
PHRASE = "Look, ${SKY}"

Result:
PHRASE = "Look, the sky is blue"

▶ Normal expansion is correct in most cases. Only use := when really needed.
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Operators: appending and prepending

▶ Variable values can be modified by composition:
+= append (with space)
=+ prepend (with space)
.= append (without space)
=. prepend (without space)
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Operators: default and weak default values

▶ The ?= operator assigns a value only if the variable has not been assigned when
the statement is parsed

COLOUR ?= "unknown"
COLOUR = "blue"

Result: COLOUR = "blue"

COLOUR ?= "unknown"

Result: COLOUR = "unknown"

▶ The ??= operator assigns a value only if the variable has not been assigned when
the statement is parsed, not even using a ?= operator
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Operators caveats

▶ The operators apply their effect during parsing
▶ Example:

VAR ?= "a"
VAR += "b"

Result: VAR = "a b"

VAR += "b"
VAR ?= "a"

Result: VAR = " b"

▶ The parsing order of files is difficult to predict, no assumption should be made
about it.

▶ To avoid the problem, avoid using +=, =+, .= and =. in
$BUILDDIR/conf/local.conf. Always use overrides (see following slides).
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Overrides

▶ Bitbake overrides allow appending, prepending or modifying a variable at
expansion time, when the variable’s value is read

▶ Overrides are written as <VARIABLE>:<override> = "some_value"

▶ A different syntax was used before Honister (3.4), with no retrocompatibility:
<VARIABLE>_<override> = "some_value"
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Overrides to modify variable values

▶ The append override adds at the end of the variable (without space).
• IMAGE_INSTALL:append = " dropbear" adds dropbear to the packages installed

on the image.
▶ The prepend override adds at the beginning of the variable (without space).

• FILESEXTRAPATHS:prepend := "${THISDIR}/${PN}:" adds the folder to the set of
paths where files are located (in a recipe).

▶ The remove override removes all occurrences of a value within a variable.
• IMAGE_INSTALL:remove = "i2c-tools"
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Overrides for conditional assignment

▶ Append the machine name to only define a configuration variable for a given
machine.

▶ It tries to match with values from OVERRIDES which includes MACHINE,
SOC_FAMILY, and more.

▶ If the override is in OVERRIDES, the assignment is applied, otherwise it is ignored.

OVERRIDES="arm:armv7a:ti-soc:ti33x:beaglebone:poky"

KERNEL_DEVICETREE:beaglebone = "am335x-bone.dtb" # This is applied
KERNEL_DEVICETREE:dra7xx-evm = "dra7-evm.dtb" # This is ignored
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Overrides for conditional assignment: precedence

▶ The most specific assignment takes precedence.
▶ Example:

IMAGE_INSTALL:beaglebone = "busybox mtd-utils i2c-tools"
IMAGE_INSTALL = "busybox mtd-utils"

▶ If the machine is beaglebone:
• IMAGE_INSTALL = "busybox mtd-utils i2c-tools"

▶ Otherwise:
• IMAGE_INSTALL = "busybox mtd-utils"
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Combining overrides

▶ The previous methods can be combined.
▶ If we define:

• IMAGE_INSTALL = "busybox mtd-utils"
• IMAGE_INSTALL:append = " dropbear"
• IMAGE_INSTALL:append:beaglebone = " i2c-tools"

▶ The resulting configuration variable will be:
• IMAGE_INSTALL = "busybox mtd-utils dropbear i2c-tools" if the machine

being built is beaglebone.
• IMAGE_INSTALL = "busybox mtd-utils dropbear" otherwise.
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Order of variable assignment

1. All the operators are applied,
in parsing order

2. :append overrides are applied
3. :prepend overrides are applied
4. :remove overrides are applied
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bitbake-getvar

▶ bitbake-getvar can be used to understand and debug how variables are assigned
▶ bitbake-getvar <VARIABLE>

▶ Lists each configuration file touching the variable, the pre-expansion value and the
final value

$ bitbake-getvar DEPLOY_DIR
NOTE: Starting bitbake server...
#
# $DEPLOY_DIR [2 operations]
# set? /home/user/yocto-labs/poky/meta/conf/bitbake.conf:440
# "${TMPDIR}/deploy"
# set /home/user/yocto-labs/poky/meta/conf/documentation.conf:137
# [doc] "Points to the general area that the OpenEmbedded build system uses to place images, [...]"
# pre-expansion value:
# "${TMPDIR}/deploy"
DEPLOY_DIR="/home/user/yocto-labs/build/tmp/deploy"
$
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Using Yocto Project - advanced usage

Package variants
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Introduction to package variants

▶ Some packages have the same purpose, and only one can be used at a time.
▶ The build system uses virtual packages to reflect this. A virtual package

describes functionalities and several packages may provide it.
▶ Only one of the packages that provide the functionality will be compiled and

integrated into the resulting image.
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Variant examples

▶ The virtual packages are often in the form virtual/<name>
▶ Example of available virtual packages with some of their variants:

• virtual/bootloader: u-boot, u-boot-ti-staging…
• virtual/kernel: linux-yocto, linux-yocto-tiny, linux-yocto-rt, linux-ti-staging…
• virtual/libc: glibc, musl, newlib
• virtual/xserver: xserver-xorg
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Package selection

▶ Variants are selected thanks to the PREFERRED_PROVIDER configuration variable.
▶ The package names have to suffix this variable.
▶ Examples:

• PREFERRED_PROVIDER_virtual/kernel ?= "linux-ti-staging"
• PREFERRED_PROVIDER_virtual/libgl = "mesa"
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Version selection

▶ By default, Bitbake will try to build the provider with the highest version number,
from the highest priority layer, unless the recipe defines
DEFAULT_PREFERENCE = "-1"

▶ When multiple package versions are available, it is also possible to explicitly pick a
given version with PREFERRED_VERSION.

▶ The package names have to suffix this variable.
▶ % can be used as a wildcard.
▶ Example:

• PREFERRED_VERSION_nginx = "1.20.1"
• PREFERRED_VERSION_linux-yocto = "5.14%"
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Using Yocto Project - advanced usage

Selection of packages to install
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Selection of packages to install

▶ The set of packages installed into the image is defined by the target you choose
(e.g. core-image-minimal).

▶ It is possible to have a custom set by defining our own target, and we will see this
later.

▶ When developing or debugging, adding packages can be useful, without modifying
the recipes.

▶ Packages are controlled by the IMAGE_INSTALL configuration variable.
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Using Yocto Project - advanced usage

The power of BitBake
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Common BitBake options

▶ BitBake can be used to run a full build for a given target with bitbake [target]
• target is a recipe name, possibly with modifiers, e.g. -native
• bitbake ncurses
• bitbake ncurses-native

▶ But it can be more precise, with additional options:
-c <task> execute the given task

-s list all available recipes and their versions
-f force the given task to be run by removing its stamp file

world keyword for all recipes
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BitBake examples

▶ bitbake -c listtasks virtual/kernel
• Gives a list of the available tasks for the recipe providing the package

virtual/kernel. Tasks are prefixed with do_.
▶ bitbake -c menuconfig virtual/kernel

• Execute the task menuconfig on the recipe providing the virtual/kernel package.
▶ bitbake -f dropbear

• Force the dropbear recipe to run all tasks.
▶ bitbake --runall=fetch core-image-minimal

• Download all recipe sources and their dependencies.
▶ For a full description: bitbake --help
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shared state cache

▶ BitBake stores the output of each task in a directory, the shared state cache.
▶ This cache is used to speed up compilation.
▶ Its location is defined by the SSTATE_DIR variable and defaults to

build/sstate-cache.
▶ Over time, as you compile more recipes, it can grow quite big. It is possible to

clean old data with:
$ find sstate-cache/ -type f -atime +30 -delete

This removes all files that have last been accessed more than 30 days ago (for
example).
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Practical lab - Advanced Yocto configuration

▶ Modify the build configuration
▶ Customize the package selection
▶ Experiment with BitBake
▶ Mount the root file system over NFS
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Writing recipes - basics

Writing recipes - basics
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Writing recipes - basics

Recipes: overview
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Recipes
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Basics

▶ A recipe describes how to handle a given software component (application, library,
…).

▶ It is a set of instructions to describe how to retrieve, patch, compile, install and
generate binary packages.

▶ It also defines what build or runtime dependencies are required.
▶ Recipes are parsed by the bitbake build engine.
▶ The format of a recipe file name is <application-name>_<version>.bb
▶ The output product of a recipe is a set of binary packages (rpm, deb or ipk):

typically <recipename>, <recipename>-doc, <recipename>-dbg etc.
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Content of a recipe

▶ A recipe contains configuration variables: name, license, dependencies, path to
retrieve the source code…

▶ It also contains functions that can be run (fetch, configure, compile…) which are
called tasks.

▶ Tasks provide a set of actions to perform.
▶ Remember the bitbake -c <task> <target> command?
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Common variables

▶ To make it easier to write a recipe, some variables are automatically available:
• BPN: recipe name, extracted from the recipe file name
• PN: BPN potentially with prefixes or suffixes added such as nativesdk-, or -native
• PV: package version, extracted from the the recipe file name
• BP: defined as ${BPN}-${PV}

▶ The recipe name and version usually match the upstream ones.
▶ When using the recipe bash_5.1.bb:

• ${BPN} = "bash"
• ${PV} = "5.1"
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Writing recipes - basics

Organization of a recipe
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Organization of a recipe
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Organization of a recipe

▶ Many applications have more than one recipe, to support different versions. In
that case the common metadata is included in each version specific recipe and is
in a .inc file:

• <application>.inc

version agnostic metadata
• <application>_<version>.bb

require <application>.inc
any version specific metadata

▶ We can divide a recipe into three main parts:
• The header: what/who
• The sources: where
• The tasks: how
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The header

Configuration variables to describe the application:
▶ SUMMARY: short descrition for the package manager
▶ DESCRIPTION: describes what the software is about
▶ HOMEPAGE: URL to the project’s homepage
▶ SECTION: package category (e.g. console/utils)
▶ LICENSE: the application’s license, using SPDX identifiers

(https://spdx.org/licenses/)
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The source locations: overview

▶ We need to retrieve both the raw sources from an official location and the
resources needed to configure, patch or install the application.

▶ SRC_URI defines where and how to retrieve the needed elements. It is a set of URI
schemes pointing to the resource locations (local or remote).

▶ URI scheme syntax: scheme://url;param1;param2
▶ scheme can describe a local file using file:// or remote locations with https://,

git://, svn://, hg://, ftp://…
▶ By default, sources are fetched in $BUILDDIR/downloads. Change it with the

DL_DIR variable in conf/local.conf
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The source locations: remote files 1/2

▶ The git scheme:
• git://<url>;protocol=<protocol>;branch=<branch>
• When using git, it is necessary to also define SRCREV. It has to be a commit hash

and not a tag to be able to do offline builds (a git tag can change, you then need to
connect to the repository to check for a possible update). The branch parameter is
mandatory as a safety check that SRCREV is on the expected branch.

▶ The http, https and ftp schemes:
• https://example.com/application-1.0.tar.bz2
• A few variables are available to help pointing to remote locations:

${SOURCEFORGE_MIRROR}, ${GNU_MIRROR}, ${KERNELORG_MIRROR}…
• Example: ${SOURCEFORGE_MIRROR}/<project-name>/${BPN}-${PV}.tar.gz
• See meta/conf/bitbake.conf
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The source locations: remote files 2/2

▶ An md5 or an sha256 sum must be provided when the protocol used to retrieve the
file(s) does not guarantee their integrity. This is the case for https, http or ftp.

SRC_URI[md5sum] = "97b2c3fb082241ab5c56ab728522622b"
SRC_URI[sha256sum] = "..."

▶ It’s possible to use checksums for more than one file, using the name parameter:

SRC_URI = "http://example.com/src.tar.bz2;name=tarball \
http://example.com/fixes.patch;name=patch"

SRC_URI[tarball.md5sum] = "97b2c3fb082241ab5c56..."
SRC_URI[patch.md5sum] = "b184acf9eb39df794ffd..."
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The source locations: local files

▶ SRC_URI items using the file:// scheme are local files
▶ They are not downloaded, but rather copied from the layer to the work directory
▶ The searched paths are defined in the FILESPATH variable
▶ FILESPATH is a colon-separated list of paths to look for files
▶ The order matters: when a file is found in a path, the search ends
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FILESPATH 1/3

▶ FILESPATH is generated with all combinations of:
▶ Base paths

• ${FILE_DIRNAME}/${BP} (e.g. BP = dropbear-2020.81)
• ${FILE_DIRNAME}/${BPN} (e.g. BPN = dropbear)
• ${FILE_DIRNAME}/files
• Items in FILESEXTRAPATHS (none by default)
• ${FILE_DIRNAME} is the directory containing the .bb file

▶ The overrides in FILESOVERRIDES
• Set as ${TRANSLATED_TARGET_ARCH}:${MACHINEOVERRIDES}:${DISTROOVERRIDES}
• E.g. arm:armv7a:ti-soc:ti33x:beaglebone:poky
• Applied right to left
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FILESPATH 2/3

▶ This results in a long list, including:
• /.../meta/recipes-core/dropbear/dropbear-2020.81/poky
• /.../meta/recipes-core/dropbear/dropbear/poky
• /.../meta/recipes-core/dropbear/files/poky
• /.../meta/recipes-core/dropbear/dropbear-2020.81/beaglebone
• /.../meta/recipes-core/dropbear/dropbear/beaglebone
• /.../meta/recipes-core/dropbear/files/beaglebone
• /.../meta/recipes-core/dropbear/dropbear-2020.81/ti33x
• /.../meta/recipes-core/dropbear/dropbear/ti33x
• /.../meta/recipes-core/dropbear/files/ti33x
• …
• /.../meta/recipes-core/dropbear/dropbear-2020.81/armv7a
• /.../meta/recipes-core/dropbear/dropbear/armv7a
• /.../meta/recipes-core/dropbear/files/armv7a
• …
• /.../meta/recipes-core/dropbear/dropbear-2020.81/
• /.../meta/recipes-core/dropbear/dropbear/

• /.../meta/recipes-core/dropbear/files/
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FILESPATH 3/3

▶ This complex logic allows to use different files without conditional code
▶ Example: with a single item in SRC_URI:

SRC_URI += "file://defconfig"

a different defconfig can be used for different MACHINE values:
recipes-kernel/
��� linux

��� my-linux
�   ��� mymachine1
�   �   ��� defconfig <-- used when MACHINE="mymachine1"
�   ��� mymachine2
�   �   ��� defconfig <-- used when MACHINE="mymachine2"
�   ��� defconfig <-- used for any other MACHINE value
��� my-linux_6.4.bb
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The source locations: tarballs

▶ When extracting a tarball, bitbake expects to find the extracted files in a
directory named <application>-<version>. This is controlled by the S variable.
If the directory has another name, you must explicitly define S.

▶ If the scheme is git, S must be set to ${WORKDIR}/git
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The source locations: license files

▶ License files must have their own checksum.
▶ LIC_FILES_CHKSUM defines the URI pointing to the license file in the source code

as well as its checksum.

LIC_FILES_CHKSUM = "file://gpl.txt;md5=393a5ca..."
LIC_FILES_CHKSUM = \

"file://main.c;beginline=3;endline=21;md5=58e..."
LIC_FILES_CHKSUM = \

"file://${COMMON_LICENSE_DIR}/MIT;md5=083..."

▶ This allows to track any license update: if the license changes, the build will
trigger a failure as the checksum won’t be valid anymore.
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Dependencies 1/2

▶ A recipe can have dependencies during the build or at runtime. To reflect these
requirements in the recipe, two variables are used:

• DEPENDS: List of the recipe build-time dependencies.
• RDEPENDS: List of the package runtime dependencies. Must be package specific (e.g.

with :${PN}).
▶ DEPENDS = "recipe-b": the local do_prepare_recipe_sysroot task depends on

the do_populate_sysroot task of recipe-b.
▶ RDEPENDS:${PN} = "package-b": the local do_build task depends on the

do_package_write_<archive-format> task of recipe b.
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Dependencies 2/2

▶ Sometimes a recipe has dependencies on specific versions of another recipe.
▶ bitbake allows to reflect this by using:

• DEPENDS = "recipe-b (>= 1.2)"
• RDEPENDS:${PN} = "recipe-b (>= 1.2)"

▶ The following operators are supported: =, >, <, >= and <=.
▶ A graphical tool can be used to explore dependencies or reverse dependencies:

• bitbake -g -u taskexp core-image-minimal
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Tasks

Default tasks already exist, they are defined in classes:
▶ do_fetch
▶ do_unpack
▶ do_patch
▶ do_configure
▶ do_compile
▶ do_install
▶ do_package
▶ do_rootfs

You can get a list of existing tasks for a recipe with:
bitbake <recipe> -c listtasks
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Writing tasks 1/2

▶ Functions use the sh shell syntax, with available OpenEmbedded variables and
internal functions available.

• WORKDIR: the recipe’s working directory
• S: The directory where the source code is extracted
• B: The directory where bitbake places the objects generated during the build
• D: The destination directory (root directory of where the files are installed, before

creating the image).
▶ Syntax of a task:

do_task() {
action0
action1
...

}
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Writing tasks 2/2

▶ Example:

do_compile() {
oe_runmake

}

do_install() {
install -d ${D}${bindir}
install -m 0755 hello ${D}${bindir}

}
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The main tasks
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Adding new tasks

▶ Tasks can be added with addtask

do_mkimage () {
uboot-mkimage ...

}

addtask do_mkimage after do_compile before do_install

▶ Tasks are commonly added by classes
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Writing recipes - basics

Applying patches
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Patch use cases

Patches can be applied to resolve build-system problematics:
▶ To support old versions of a software: bug and security fixes.
▶ To fix cross-compilation issues.
▶ To apply patches before they make their way into the upstream version.

However, there are cases when patching a Makefile is unnecessary:
▶ For example, when an upstream Makefile uses hardcoded CC and/or CFLAGS.
▶ You can call make with the -e option which gives precedence to variables taken

from the environment:

EXTRA_OEMAKE = "-e"
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The source locations: patches

▶ Files ending in .patch, .diff or having the apply=yes parameter will be applied
after the sources are retrieved and extracted, during the do_patch task.

• Compressed patches with .gz, .bz2, .xz or .Z suffix are automatically decompressed

SRC_URI += "file://joystick-support.patch \
file://smp-fixes.diff \
"

▶ Patches are applied in the order they are listed in SRC_URI.
▶ It is possible to select which tool will be used to apply the patches listed in

SRC_URI variable with PATCHTOOL.
▶ By default, PATCHTOOL = 'quilt' in Poky.
▶ Possible values: git, patch and quilt.
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Resolving conflicts

▶ The PATCHRESOLVE variable defines how to handle conflicts when applying patches.
▶ It has two valid values:

• noop: the build fails if a patch cannot be successfully applied.
• user: a shell is launched to resolve manually the conflicts.

▶ By default, PATCHRESOLVE = "noop" in meta-poky.
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Writing recipes - basics

Example of a recipe
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Hello world recipe

SUMMARY = "Hello world program"
DESCRIPTION = "Hello world program"
HOMEPAGE = "http://example.net/hello/"
SECTION = "examples"
LICENSE = "GPL-2.0-or-later"

SRC_URI = "git://git.example.com/hello;protocol=https;branch=master"
SRCREV = "2d47b4eb66e705458a17622c2e09367300a7b118"
S = "${WORKDIR}/git"
LIC_FILES_CHKSUM = "file://hello.c;beginline=3;endline=21;md5=58e..."

do_compile() {
oe_runmake

}
do_install() {

install -d ${D}${bindir}
install -m 0755 hello ${D}${bindir}

}
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Writing recipes - basics

Example of a recipe with a version agnostic part
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tar.inc

SUMMARY = "GNU file archiving program"
HOMEPAGE = "https://www.gnu.org/software/tar/"
SECTION = "base"

SRC_URI = "${GNU_MIRROR}/tar/tar-${PV}.tar.bz2"

do_configure() { ... }

do_compile() { ... }

do_install() { ... }
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tar_1.17.bb

require tar.inc

LICENSE = "GPL-2.0-only"
LIC_FILES_CHKSUM = \
"file://COPYING;md5=59530bdf33659b29e73d4adb9f9f6552"

SRC_URI += "file://avoid_heap_overflow.patch"

SRC_URI[md5sum] = "c6c4f1c075dbf0f75c29737faa58f290"
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tar_1.26.bb

require tar.inc

LICENSE = "GPL-3.0-only"
LIC_FILES_CHKSUM = \
"file://COPYING;md5=d32239bcb673463ab874e80d47fae504"

SRC_URI[md5sum] = "2cee42a2ff4f1cd4f9298eeeb2264519"
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Writing recipes - basics

Debugging recipes
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Log and run files

▶ For each task, these files are generated in the temp directory under the recipe
work directory

▶ run.do_<taskname>
• the script generated from the recipe content and executed to run the task

▶ log.do_<taskname>
• the output of the task execution

▶ These can be inspected to understand what is being done by the tasks
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Debugging variable assignment

▶ bitbake-getvar can dump the per-recipe variable value using the -r option
• bitbake-getvar -r ncurses SRC_URI

▶ Similarly, bitbake -e dumps the entire environment, and also the task code
• bitbake -e
• bitbake -e ncurses
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Practical lab - Add a custom application

▶ Write a recipe for a custom application
▶ Integrate it in the image
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Writing recipes - advanced

Writing recipes -
advanced
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Writing recipes - advanced

Extending a recipe
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Introduction to recipe extensions

▶ It is a good practice to avoid modifying recipes available in third party layers so it
is easy to update.

▶ But it is sometimes useful to apply a custom patch or add a configuration file for
example.

▶ The bitbake build engine allows to modify a recipe by extending it.
▶ Multiple extensions can be applied to a recipe.
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Introduction to recipe extensions

▶ Metadata can be changed, added or appended.
▶ Tasks can be added or appended.
▶ Operators are used extensively, to add, append, prepend or assign values.
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Extend a recipe
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Extend a recipe

▶ The recipe extensions end in .bbappend
▶ Append files must have the same root name as the recipe they extend, but can

also use wildcards.
• example_0.1.bbappend applies to example_0.1.bb
• example_0.%.bbappend applies to example_0.1.bb and example_0.2.bb but not

example_1.0.bb
• The % works only just before the .bbappend suffix

▶ Append files should be version specific. If the recipe is updated to a newer
version, the append files must also be updated.

▶ If adding new files, the path to their directory must be prepended to the
FILESEXTRAPATHS variable.

• Files are looked up in paths referenced in FILESEXTRAPATHS, from left to right.
• Prepending a path makes sure it has priority over the recipe’s one. This allows to

override recipes’ files.
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Append file example

FILESEXTRAPATHS:prepend := "${THISDIR}/files:"

SRC_URI += "file://custom-modification-0.patch \
file://custom-modification-1.patch \
"
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Modifying existing tasks

Tasks can be extended with :prepend or :append

do_install:append() {
install -d ${D}${sysconfdir}
install -m 0644 hello.conf ${D}${sysconfdir}

}
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Writing recipes - advanced

Providing virtual packages
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Providing virtual packages

▶ bitbake allows to use virtual names instead of the actual package name. We saw
a use case with package variants.

▶ The virtual name is specified through the PROVIDES variable.
▶ Several recipes can provide the same virtual name. Only one will be built and

installed into the generated image.
▶ PROVIDES = "virtual/kernel"
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Writing recipes - advanced

Classes
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Introduction to classes

▶ Classes provide an abstraction to common code, which can be re-used in multiple
recipes.

▶ Common tasks do not have to be re-developed!
▶ Any metadata and task which can be put in a recipe can be used in a class.
▶ Classes extension is .bbclass
▶ Classes are located in the classes folder of a layer.
▶ Recipes can use this common code by inheriting a class:

• inherit <class>

▶ A recipe can inherit from multiple classes.
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Common classes

▶ Common classes can be found in meta/classes/
• base.bbclass
• kernel.bbclass
• autotools.bbclass
• autotools-brokensep.bbclass
• cmake.bbclass
• meson.bbclass
• native.bbclass
• systemd.bbclass
• update-rc.d.bbclass
• useradd.bbclass
• …

▶ Starting with Yocto Langdale (4.1), most classes are split into scope-specific
subdirectories: meta/classes-recipe/, meta/classes-global/
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The base class

▶ Every recipe inherits the base class automatically.
▶ Defines basic common tasks with a default implementation:

• fetch, unpack, patch
• configure, compile, install
• Utility tasks such as: clean, listtasks

▶ Automatically applies patch files listed in SRC_URI

▶ Defines mirrors: SOURCEFORGE_MIRROR, DEBIAN_MIRROR, GNU_MIRROR,
KERNELORG_MIRROR…

▶ Defines oe_runmake, using EXTRA_OEMAKE to use custom arguments.
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The kernel class

▶ Used to build Linux kernels.
▶ Defines tasks to configure, compile and install a kernel and its modules.
▶ Automatically applies a defconfig listed in SRC_URI

SRC_URI += "file://defconfig"

▶ The kernel is divided into several packages: kernel, kernel-base, kernel-dev,
kernel-modules…

▶ Automatically provides the virtual package virtual/kernel.
▶ Configuration variables are available:

• KERNEL_IMAGETYPE, defaults to zImage
• KERNEL_EXTRA_ARGS
• INITRAMFS_IMAGE
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The autotools class

▶ Defines tasks and metadata to handle applications using the autotools build
system (autoconf, automake and libtool):

• do_configure: generates the configure script using autoreconf and loads it with
standard arguments or cross-compilation.

• do_compile: runs make
• do_install: runs make install

▶ Extra configuration parameters can be passed with EXTRA_OECONF.
▶ Compilation flags can be added thanks to the EXTRA_OEMAKE variable.
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Example: use the autotools class

DESCRIPTION = "Print a friendly, customizable greeting"
HOMEPAGE = "https://www.gnu.org/software/hello/"
SECTION = "examples"
LICENSE = "GPL-3.0-or-later"

SRC_URI = "${GNU_MIRROR}/hello/hello-${PV}.tar.gz"
SRC_URI[md5sum] = "67607d2616a0faaf5bc94c59dca7c3cb"
SRC_URI[sha256sum] = "ecbb7a2214196c57ff9340aa71458e1559abd38f6d8d169666846935df191ea7"
LIC_FILES_CHKSUM = "file://COPYING;md5=d32239bcb673463ab874e80d47fae504"

inherit autotools
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The useradd class

▶ This class helps to add users to the resulting image.
▶ Adding custom users is required by many services to avoid running them as root.
▶ USERADD_PACKAGES must be defined when the useradd class is inherited. It

defines the individual packages produced by the recipe that need users or groups
to be added.

▶ Users and groups will be created before the packages using it perform their
do_install.

▶ At least one of the two following variables must be set:
• USERADD_PARAM: parameters to pass to useradd.
• GROUPADD_PARAM: parameters to pass to groupadd.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 147/325

https://docs.yoctoproject.org/ref-manual/variables.html#term-USERADD_PACKAGES
https://docs.yoctoproject.org/ref-manual/variables.html#term-USERADD_PARAM
https://docs.yoctoproject.org/ref-manual/variables.html#term-GROUPADD_PARAM


Example: use the useradd class

DESCRIPTION = "useradd class usage example"
SECTION = "examples"
LICENSE = "MIT"

SRC_URI = "file://file0"
LIC_FILES_CHKSUM = "file://${COREBASE}/meta/files/common-licenses/MIT;md5=0835ade698e0bc..."

inherit useradd

USERADD_PACKAGES = "${PN}"
USERADD_PARAM:${PN} = "-u 1000 -d /home/user0 -s /bin/bash user0"

FILES:${PN} = "/home/user0/file0"

do_install() {
install -d ${D}/home/user0/
install -m 644 file0 ${D}/home/user0/
chown user0:user0 ${D}/home/user0/file0

}
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The bin_package class

▶ In some cases you only need to install pre-built files into the generated root
filesystem

• E.g.: firmware blobs
▶ bin_package.bbclass simplifies this

• Disables do_configure and do_compile
• Provides a default do_install that copies whatever is in S (useful e.g. when

extracting a pre-built RPM/DEB)
▶ Additionally you probably need:

• Remember to set the LICENSE to CLOSED if applicable
• You probably should also inherit allarch
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Writing recipes - advanced

BitBake file inclusions
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Locate files in the build system

▶ Metadata can be shared using included files.
▶ BitBake uses the BBPATH to find the files to be included. It also looks into the

current directory.
▶ Three keywords can be used to include files from recipes, classes or other

configuration files:
• inherit
• include
• require
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The inherit keyword

▶ inherit can be used in recipes or classes, to inherit the functionalities of a class.
▶ To inherit the functionalities of the kernel class, use: inherit kernel

▶ inherit looks for files ending in .bbclass, in classes directories found in
BBPATH.

▶ It is possible to include a class conditionally using a variable: inherit ${FOO}
▶ Inheriting in configuration files is based on the INHERIT variable instead:

• INHERIT += "rm_work"
• This inherits the class globally (i.e. for all recipes)
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The include and require keywords

▶ include and require can be used in all files, to insert the content of another file
at that location.

▶ If the path specified on the include (or require) path is relative, bitbake will
insert the first file found in BBPATH.

▶ include does not produce an error when a file cannot be found, whereas require
raises a parsing error.

▶ To include a local file: require ninvaders.inc

▶ To include a file from another location (which could be in another layer):
require path/to/file.inc
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Writing recipes - advanced

More recipe debugging tools
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More recipe debugging tools

▶ A development shell, exporting the full environment can be used to debug build
failures:

$ bitbake -c devshell <recipe>

▶ To understand what a change in a recipe implies, you can activate build history in
local.conf:

INHERIT += "buildhistory"
BUILDHISTORY_COMMIT = "1"

Then use the buildhistory-diff tool to examine differences between two builds.

• buildhistory-diff
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Writing recipes - advanced

Network usage
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Source fetching

▶ bitbake will look for files to retrieve at the following locations, in order:
1. DL_DIR (the local download directory).
2. The PREMIRRORS locations.
3. The upstream source, as defined in SRC_URI.
4. The MIRRORS locations.

▶ If all the mirrors fail, the build will fail.
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Mirror configuration in OpenEmbedded-Core

meta/classes/mirrors.bbclass

PREMIRRORS += "git://sourceware.org/git/glibc.git https://downloads.yoctoproject.org/mirror/sources/ \
git://sourceware.org/git/binutils-gdb.git https://downloads.yoctoproject.org/mirror/sources/"

MIRRORS += "\
svn://.*/.* http://sources.openembedded.org/ \
git://.*/.* http://sources.openembedded.org/ \
https?://.*/.* http://sources.openembedded.org/ \
ftp://.*/.* http://sources.openembedded.org/ \
...
"
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Configuring the premirrors

▶ It is easy to add a custom mirror to the PREMIRRORS by using the own-mirrors
class (only one URL supported):

INHERIT += "own-mirrors"
SOURCE_MIRROR_URL = "http://example.com/my-mirror"

▶ For a more complex setup, prepend custom mirrors to the PREMIRRORS variable:

PREMIRRORS:prepend = "\
git://.*/.* http://example.com/my-mirror-for-git/ \
svn://.*/.* http://example.com/my-mirror-for-svn/ \
http://.*/.* http://www.yoctoproject.org/sources/ \
https://.*/.* http://www.yoctoproject.org/sources/ "
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Creating a local mirror

▶ The download directory can be exposed on the network to create a local mirror
• Except for sources fetched via an SCM a tarball of the repository is needed, not the

bare git repository that is created by default
• You can use BB_GENERATE_MIRROR_TARBALLS = "1" to generate tarballs of the git

repositories in DL_DIR
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Forbidding network access

▶ Since Kirkstone (4.0), network access is only enabled in the do_fetch class, to
make sure no untraced sources are fetched.

▶ You can also completely disable network access using BB_NO_NETWORK = "1"
• To download all the sources before disabling network access use

bitbake --runall=fetch core-image-minimal

▶ Or restrict bitbake to only download files from the PREMIRRORS, using
BB_FETCH_PREMIRRORONLY = "1"
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Layers

Introduction to layers
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Layers principles

▶ The OpenEmbedded build system manipulates metadata.
▶ Layers allow to isolate and organize the metadata.

• A layer is a collection of recipes.
▶ It is a good practice to begin a layer name with the prefix meta-.
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Layers in Poky
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Layers in Poky

▶ The Poky reference system is a set of basic common layers:
• meta
• meta-skeleton
• meta-poky
• meta-yocto-bsp

▶ Poky is not a final set of layers. It is the common base.
▶ Layers are added when needed.
▶ When making modifications to the existing recipes or when adding new ones, it is

a good practice to avoid modifying Poky. Instead you can create your own layers!
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Third party layers
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Integrate and use a layer 1/3

▶ A list of existing and maintained layers can be found at
https://layers.openembedded.org

▶ Instead of redeveloping layers, always check the work hasn’t been done by others.
▶ It takes less time to download a layer providing a package you need and to add an

append file if some modifications are needed than to do it from scratch.
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Integrate and use a layer 2/3

▶ The location where a layer is saved on the disk doesn’t matter.
• But a good practice is to save it where all others layers are stored.

▶ The only requirement is to let BitBake know about the new layer:
• The list of layers BitBake uses is defined in $BUILDDIR/conf/bblayers.conf
• To include a new layer, add its absolute path to the BBLAYERS variable.
• BitBake parses each layer specified in BBLAYERS and adds the recipes, configurations

files and classes it contains.
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Integrate and use a layer 3/3

▶ The bitbake-layers tool is provided alongside bitbake.
▶ It can be used to inspect the layers and to manage

$BUILDDIR/conf/bblayers.conf:
• bitbake-layers show-layers
• bitbake-layers add-layer meta-custom
• bitbake-layers remove-layer meta-qt5
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Some useful layers

▶ Many SoC specific layers are available, providing support for the boards using
these SoCs. Some examples: meta-ti-bsp, meta-freescale and
meta-st-stm32mp.

▶ Other layers offer to support applications not available in the Poky reference
system:

• meta-browser: web browsers (Chromium, Firefox).
• meta-filesystems: support for additional filesystems.
• meta-java and meta-oracle-java: Java support.
• meta-linaro-toolchain: Linaro toolchain recipes.
• meta-qt5: QT5 modules.
• meta-realtime: real time tools and test programs.
• meta-telephony and many more…

Notice that some of these layers do not come with all the Yocto branches.
meta-realtime layer does not have a honister (3.4) branch, for example.
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Layers

Layer recommendations
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Layer recommendations

▶ Keep your build system simple: use very few layers initially
▶ Then add layers when needed based on benefit/cost ratio

• The quality of several board/SoM layers is questionable
• The quality of SoC vendor layers is varying

▶ A working example:
• https://github.com/bootlin/simplest-yocto-setup
• Minimal dependencies: OE-core, meta-arm
• One company-specific layer: meta-kiss
• Custom distro and machine configurations, image recipes
• Can be used as a starting point for your project
• Introduced at Yocto Project Summit 2023 (slides, video)
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Creating a layer
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Custom layer
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Create a custom layer 1/2

▶ A layer is a set of files and directories and can be created by hand.
▶ However, the bitbake-layers create-layer command helps us create new

layers and ensures this is done right.
▶ bitbake-layers create-layer -p <PRIORITY> <layer>

▶ The priority is used to select which recipe to use when multiple layers contains
the same recipe

▶ The layer priority takes precedence over the recipe version number ordering. This
allows to downgrade a recipe in a layer.
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Create a custom layer 2/2

▶ The layer created will be pre-filled with the following files:
conf/layer.conf The layer’s configuration. Holds its priority and generic

information. No need to modify it in many cases.
• Mandatory, this is the entry point for the layer.

COPYING.MIT The license under which a layer is released. By default MIT.
README A basic description of the layer. Contains a contact e-mail to update.

▶ By default, all metadata matching ./recipes-*/*/*.bb will be parsed by the
BitBake build engine.
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Creating a layer: best practices

▶ Do not copy and modify existing recipes from other layers. Instead use append
files.

▶ Avoid duplicating files. Use append files or explicitly use a path relative to other
layers.

▶ Save the layer alongside other layers.
▶ Use LAYERDEPENDS to explicitly define layer dependencies.
▶ Use LAYERSERIES_COMPAT to define the Yocto version(s) with which the layer is

compatible.
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Practical lab - Create a custom layer

▶ Create a layer from scratch
▶ Add recipes to the new layer
▶ Integrate it to the build
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Practical lab - Extend a recipe

▶ Apply patches to an existing recipe
▶ Use a custom configuration file for an existing

recipe
▶ Extend a recipe to fit your needs
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BSP Layers

BSP Layers
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BSP Layers

Introduction to BSP layers in the Yocto Project

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 182/325



BSP layers
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BSP layers overview

▶ BSP layers are a subset of the layers.
▶ They hold metadata with the purpose of supporting a specific class of hardware

devices.
▶ They usually provide:

• Hardware configuration files (machines)
• Custom kernel and bootloader recipes and configurations
• Modules and drivers to enable specific hardware features (e.g. multimedia

accelerators)
• Pre-built user binaries and firmware

▶ A good practice is to name it meta-<bsp_name>.
▶ Examples: meta-ti-bsp, meta-st-stm32mp.
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BSP Layers

Hardware configuration files
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Overview 1/2

▶ A layer provides one machine file (hardware configuration file) per machine it
supports.

▶ These configuration files are stored under
meta-<bsp_name>/conf/machine/*.conf

▶ The file names correspond to the values set in the MACHINE configuration variable.
• meta-ti/meta-ti-bsp/conf/machine/beaglebone.conf
• MACHINE = "beaglebone"

▶ Each machine should be described in the README file of the BSP.
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Overview 2/2

▶ The hardware configuration file contains configuration variables related to the
architecture and to the machine features.

▶ Some other variables help customize the kernel image or the filesystems used.
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Machine configuration

▶ TARGET_ARCH: The architecture of the device being built.
▶ PREFERRED_PROVIDER_virtual/kernel: The default kernel.
▶ MACHINE_FEATURES: List of hardware features provided by the machine, e.g.

usbgadget usbhost screen wifi

▶ SERIAL_CONSOLES: Speed and device for the serial consoles to attach. Used to
configure getty, e.g. 115200;ttyS0

▶ KERNEL_IMAGETYPE: The type of kernel image to build, e.g. zImage

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 188/325

https://docs.yoctoproject.org/ref-manual/variables.html#term-TARGET_ARCH
https://docs.yoctoproject.org/ref-manual/variables.html#term-PREFERRED_PROVIDER
https://docs.yoctoproject.org/ref-manual/variables.html#term-MACHINE_FEATURES
https://docs.yoctoproject.org/ref-manual/variables.html#term-SERIAL_CONSOLES
https://docs.yoctoproject.org/ref-manual/variables.html#term-KERNEL_IMAGETYPE


MACHINE_FEATURES

▶ Lists the hardware features provided by the machine.
▶ These features are used by package recipes to enable or disable functionalities.
▶ Some packages are automatically added to the resulting root filesystem depending

on the feature list.
• The machine feature keyboard adds the keymaps to the image.
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conf/machine/include/cfa10036.inc

# Common definitions for cfa-10036 boards
include conf/machine/include/imx-base.inc
include conf/machine/include/tune-arm926ejs.inc

SOC_FAMILY = "mxs:mx28:cfa10036"

PREFERRED_PROVIDER_virtual/kernel ?= "linux-cfa"
PREFERRED_PROVIDER_virtual/bootloader ?= "barebox"
IMAGE_BOOTLOADER = "barebox"
BAREBOX_BINARY = "barebox"
IMAGE_FSTYPES:mxs = "tar.bz2 barebox.mxsboot-sdcard sdcard.gz"
IMXBOOTLETS_MACHINE = "cfa10036"

KERNEL_IMAGETYPE = "zImage"
KERNEL_DEVICETREE = "imx28-cfa10036.dtb"
# we need the kernel to be installed in the final image
IMAGE_INSTALL:append = " kernel-image kernel-devicetree"
SDCARD_ROOTFS ?= "${DEPLOY_DIR_IMAGE}/${IMAGE_NAME}.rootfs.ext3"
SERIAL_CONSOLES = "115200;ttyAMA0"
MACHINE_FEATURES = "usbgadget usbhost vfat"
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conf/machine/cfa10057.conf

#@TYPE: Machine
#@NAME: Crystalfontz CFA-10057
#@SOC: i.MX28
#@DESCRIPTION: Machine configuration for CFA-10057, also called CFA-920
#@MAINTAINER: Alexandre Belloni <alexandre.belloni@bootlin.com>

require conf/machine/include/cfa10036.inc

KERNEL_DEVICETREE += "imx28-cfa10057.dtb"

MACHINE_FEATURES += "touchscreen"
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BSP Layers

Bootloader
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Default bootloader 1/2

▶ By default (on ARM) the bootloader used is the mainline version of U-Boot, with
a fixed version (per Poky release).

▶ All the magic is done in meta/recipes-bsp/u-boot/u-boot.inc

▶ Some configuration variables used by the U-Boot recipe can be customized, in the
machine file.
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Default bootloader 2/2

▶ SPL_BINARY: If an SPL is built, describes the name of the output binary. Defaults
to an empty string.

▶ UBOOT_SUFFIX: bin (default) or img.
▶ UBOOT_MACHINE: The target used to build the configuration.
▶ UBOOT_ENTRYPOINT: The bootloader entry point.
▶ UBOOT_LOADADDRESS: The bootloader load address.
▶ UBOOT_MAKE_TARGET: Make target when building the bootloader. Defaults to all.
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Customize the bootloader

▶ It is possible to support a custom U-Boot by creating an extended recipe and to
append extra metadata to the original one.

▶ This works well when using a mainline version of U-Boot.
▶ Otherwise it is possible to create a custom recipe.

• Try to still use meta/recipes-bsp/u-boot/u-boot.inc
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BSP Layers

Kernel
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Linux kernel recipes in Yocto

▶ There are mainly two ways of compiling a kernel:
• By creating a custom kernel recipe, inheriting kernel.bbclass
• By using the linux-yocto packages, provided in Poky, for very complex needs

▶ The kernel used is selected in the machine file thanks to:
PREFERRED_PROVIDER_virtual/kernel

▶ Its version is defined with: PREFERRED_VERSION_<kernel_provider>

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 197/325

https://docs.yoctoproject.org/ref-manual/variables.html#term-PREFERRED_PROVIDER
https://docs.yoctoproject.org/ref-manual/variables.html#term-PREFERRED_VERSION


Linux Yocto 1/3

▶ linux-yocto is a set of recipes with advanced features to build a mainline kernel
▶ PREFERRED_PROVIDER_virtual/kernel = "linux-yocto"

▶ PREFERRED_VERSION_linux-yocto = "5.14%"
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Linux Yocto 2/3

▶ Automatically applies configuration fragments listed in SRC_URI with a .cfg
extension

SRC_URI += "file://defconfig \
file://nand-support.cfg \
file://ethernet-support.cfg"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 199/325

https://docs.yoctoproject.org/ref-manual/variables.html#term-SRC_URI


Linux Yocto 3/3

▶ Another way of configuring linux-yocto is by using Advanced Metadata.
▶ It is a powerful way of splitting the configuration and the patches into several

pieces.
▶ It is designed to provide a very configurable kernel, at the cost of higher

complexity.
▶ The full documentation can be found at

https://docs.yoctoproject.org/kernel-dev/advanced.html#working-with-
advanced-metadata-yocto-kernel-cache
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Linux Yocto: Kernel Metadata 1/2

▶ Kernel Metadata is a way to organize and to split the kernel configuration and
patches in little pieces each providing support for one feature.

▶ Two main configuration variables help taking advantage of this:
• LINUX_KERNEL_TYPE: standard (default), tiny or preempt-rt

standard: generic Linux kernel policy.
tiny: bare minimum configuration, for small kernels.
preempt-rt: applies the PREEMPT_RT patch.

• KERNEL_FEATURES: List of features to enable. Features are sets of patches and
configuration fragments.
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Linux Yocto: Kernel Metadata 2/2

▶ Kernel Metadata description files have their own syntax to describe an optional
kernel feature

▶ A basic feature is defined as a patch to apply and a configuration fragment to add
▶ Simple example, features/nunchuk.scc

define KFEATURE_DESCRIPTION "Enable Nunchuk driver"

kconf hardware enable-nunchuk-driver.cfg
patch Add-nunchuk-driver.patch

▶ To integrate the feature into the kernel image:
KERNEL_FEATURES += "features/nunchuk.scc"
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Practical lab - Create a custom machine configuration

▶ Write a machine configuration
▶ Understand how the target architecture is

chosen
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Distro Layers

Distro Layers
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Distro Layers

Distro Layers
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Distro layers
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Distro layers

▶ You can create a new distribution by using a Distro layer.
▶ This corresponds to the settings that have an impact on your packages. You can

also decide to use Musl or Glibc, Wayland or X11, systemd or sysvinit…
▶ A distribution layer allows to change the defaults that are provided by

openembedded-core or poky.
▶ It is useful to distribute changes that have been made in local.conf

▶ Note: Poky is a rather bloated distribution, mainly meant to be used for testing.
It’s not necessarily a good starting point to optimize the root filesystem for your
own platform.
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Best practice

▶ A distro layer is used to provide policy configurations for a custom distribution.
▶ It is a best practice to separate the distro layer from the custom layers you may

create and use.
▶ It often contains:

• Configuration files.
• Specific classes (for example to sign images)
• Distribution specific recipes: initialization scripts, splash screen…
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Creating a Distro layer

▶ The configuration file for the distro layer is conf/distro/<distro>.conf
▶ This file must define the DISTRO variable.
▶ It is possible to inherit configuration from an existing distro layer.
▶ You can also use all the DISTRO_* variables.
▶ Use DISTRO = "<distro>" in local.conf to use your distro configuration.

require conf/distro/poky.conf

DISTRO = "distro"
DISTRO_NAME = "distro description"
DISTRO_VERSION = "1.0"

MAINTAINER = "..."
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DISTRO_FEATURES

▶ Lists the features the distribution will enable (SSL, WiFi, Bluetooth…).
▶ As for MACHINE_FEATURES, this is used by package recipes to enable or disable

functionalities.
▶ For example, the bluetooth feature:

• Asks the bluez daemon to be built and added to the image.
• Enables bluetooth support in ConnMan.

▶ COMBINED_FEATURES provides the list of features that are enabled in both
MACHINE_FEATURES and DISTRO_FEATURES.
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Toolchain selection

▶ The toolchain selection is controlled by the TCMODE variable.
▶ It defaults to "default".
▶ The conf/distro/include/tcmode-${TCMODE}.inc file is included.

• This configures the toolchain to use by defining preferred providers and versions for
recipes such as gcc, binutils, *libc…

▶ The providers’ recipes define how to compile or/and install the toolchain.
▶ Toolchains can be built by the build system or external (rarely used because

toolchains are fast to rebuild thanks to the shared state cache).
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Sample files

▶ A distro layer often contains sample files, used as templates to build key
configurations files.

▶ Example of sample files:
• bblayers.conf.sample
• local.conf.sample

▶ In Poky, they are in meta-poky/conf/.
▶ The TEMPLATECONF variable controls where to find the samples.
▶ It is set in ${OEROOT}/.templateconf.

• OEROOT is the directory that contains the oe-init-build-env script.
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Images

Introduction to images
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Overview 1/3

▶ An image is the top level recipe and is used alongside the machine definition.
▶ Whereas the machine describes the hardware used and its capabilities, the image

is architecture agnostic and defines how the root filesystem is built, with what
packages.

▶ By default, several images are provided in Poky:
• meta*/recipes*/images/*.bb
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Overview 2/3

▶ Here are a few common images:
core-image-base Console-only image, with full support of the hardware.
core-image-minimal Small image, capable of booting a device.
core-image-minimal-dev Small image with extra tools, suitable for development.
core-image-x11 Image with basic X11 support.
core-image-weston Image with basic Wayland support.
core-image-rt core-image-minimal with real time tools and test suite.
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Overview 3/3

▶ An image is no more than a recipe.
▶ It has a description, a license (optional) and inherits the core-image class.
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Organization of an image recipe
Some special configuration variables are used to describe an image:
▶ IMAGE_BASENAME: The name of the output image files. Defaults to ${PN}.
▶ IMAGE_INSTALL: List of packages and package groups to install in the generated

image (only toplevel packages, dependencies unnecessary)
▶ IMAGE_ROOTFS_SIZE: The final root filesystem size.
▶ IMAGE_FEATURES: List of features to enable in the image (e.g.

allow-root-login).
▶ IMAGE_FSTYPES: List of formats the OpenEmbedded build system will use to

create images. Could be set in machine definitions too (machine dependent).
▶ IMAGE_LINGUAS: List of the locales to be supported in the image.
▶ IMAGE_PKGTYPE: Package type used by the build system. One of deb, rpm, ipk

and tar.
▶ IMAGE_POSTPROCESS_COMMAND: Shell commands to run at post process.
▶ EXTRA_IMAGEDEPENDS: Recipes to be built with the image, but which do not

install anything in the root filesystem (e.g. the bootloader).
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Example of an image

SUMMARY = "Example image"
IMAGE_INSTALL = "packagegroup-core-boot dropbear ninvaders"
IMAGE_LINGUAS = " "

inherit core-image

Note: unlike other recipes, image recipes don’t need to set LICENSE.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 219/325

https://docs.yoctoproject.org/ref-manual/variables.html#term-LICENSE


Root filesystem generation

▶ Image generation overview:
1. An empty directory is created for the root filesystem.
2. Packages from IMAGE_INSTALL are installed into it using the package manager.
3. One or more images files are created, depending on the IMAGE_FSTYPES value.

▶ Root filesystem creation is specific to the IMAGE_PKGTYPE value. It should be
defined in the image recipe, otherwise the first valid package type defined in
PACKAGE_CLASSES is used.

▶ All the magic is done in meta/classes/rootfs_${IMAGE_PKGTYPE}.bbclass
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Images

Image types
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IMAGE_FSTYPES

▶ Configures the resulting root filesystem image format.
▶ If more than one format is specified, one image per format will be generated.
▶ Image formats instructions are provided by openembedded-core, in

meta/classes/image_types.bbclass

▶ Common image formats are: ext2, ext3, ext4, squashfs, squashfs-xz, cpio,
jffs2, ubifs, tar.bz2, tar.gz…
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Creating an image type

▶ If you have a particular layout on your storage (for example bootloader location on
an SD card), you may want to create your own image type.

▶ This is done through a class that inherits from image_types.
▶ It has to define a function named IMAGE_CMD:<type>.
▶ Append it to IMAGE_TYPES
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Creating an image conversion type

▶ Common conversion types are: gz, bz2, sha256sum, bmap…
▶ This is done through a class that inherits from image_types.
▶ It has to define a function named CONVERSION_CMD:<type>.
▶ Append it to CONVERSIONTYPES

▶ Append valid combinations to IMAGE_TYPES
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wic

▶ wic is a tool that can create a flashable image from the compiled packages and
artifacts.

▶ It can create partitions (but doesn’t support raw flash partitions and filesystems)
▶ It can select which files are located in which partition through the use of plugins.
▶ The final image layout is described in a .wks or .wks.in file.
▶ It can be extended in any layer.
▶ Usage example:

WKS_FILE = "imx-uboot-custom.wks.in"
IMAGE_FSTYPES = "wic.bmap wic"

▶ Note: bmaptool is an alternative to dd, skipping uninitialized contents in
partitions.
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imx-uboot-custom.wks.in

part u-boot --source rawcopy --sourceparams="file=imx-boot" --no-table --align ${IMX_BOOT_SEEK}
part /boot --source bootimg-partition --use-uuid --fstype=vfat --label boot --active --align 8192 --size 64
part / --source rootfs --use-uuid --fstype=ext4 --label root --exclude-path=home/ --exclude-path=opt/ --align 8192
part /home --source rootfs --rootfs-dir=${IMAGE_ROOTFS}/home --use-uuid --fstype=ext4 --label home --align 8192
part /opt --source rootfs --rootfs-dir=${IMAGE_ROOTFS}/opt --use-uuid --fstype=ext4 --label opt --align 8192

bootloader --ptable msdos

▶ Copies imx-boot from $DEPLOY_DIR in the image, aligned on (and so at that
offset) ${IMX_BOOT_SEEK}.

▶ Creates a first partition, formatted in FAT32, with the files listed in the
IMAGE_BOOT_FILES variable.

▶ Creates an ext4 partition with the contents on the root filesystem, excluding the
content of /home and /opt

▶ Creates two ext4 partitions, one with the content of /home, the other one with
the content of /opt, from the image root filesystem.
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Images

Package groups
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Overview

▶ Package groups are a way to group packages by functionality or common purpose.
▶ Package groups are used in image recipes to help building the list of packages to

install.
▶ A package group is yet another recipe.

• Using the packagegroup class.
• The generated binary packages do not install any file, but they require other

packages.
▶ Be careful about the PACKAGE_ARCH value:

• Set to the value all by default,
• Must be explicitly set to ${MACHINE_ARCH} when there is a machine dependency.
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Common package groups

▶ packagegroup-base
• Adds many core packages to the image based on MACHINE_FEATURES and

DISTRO_FEATURES

▶ packagegroup-core-boot

▶ packagegroup-core-buildessential

▶ packagegroup-core-nfs-client

▶ packagegroup-core-nfs-server

▶ packagegroup-core-tools-debug

▶ packagegroup-core-tools-profile
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Example

./meta/recipes-core/packagegroups/packagegroup-core-tools-debug.bb:

SUMMARY = "Debugging tools"

inherit packagegroup

RDEPENDS:${PN} = "\
gdb \
gdbserver \
strace"
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Practical lab - Create a custom image

▶ Write an image recipe
▶ Choose the packages to install
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Writing recipes - going further

Writing recipes - going
further
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Writing recipes - going further

The per-recipe sysroot
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Sysroot

▶ The sysroot is the the logical root directory for headers and libraries
▶ Where gcc looks for headers, and ld looks for libraries
▶ Contains:

• The kernel headers
• The C library and headers
• Other libraries and their headers
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Per-recipe sysroot

▶ Instead of a global sysroot, bitbake implements a per-recipe sysroot
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Per-recipe sysroot

▶ Before the actual build, each recipe prepares its own sysroot
• Contains libraries and headers only for the recipes it DEPENDS on
• Ensures the configuration stage will not detect libraries not explicitly listed in

DEPENDS but already built for other reasons
• ${WORKDIR}/recipe-sysroot for target recipes
• ${WORKDIR}/recipe-sysroot-native for native recipes

▶ At the end of the build, each recipe produces its destination sysroot
• Its own slice of sysroot, with the libraries and headers it directly provides
• Used as input for other recipes to generate their recipe-sysroot
• ${WORKDIR}/sysroot-destdir
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The complete sysroot

▶ A complete sysroot is available:
• For each image

In ${WORKDIR}/recipe-sysroot just like any recipe
• In the SDK

Covered later
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Writing recipes - going further

Using Python code in metadata
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Tasks in Python

▶ Tasks can be written in Python when using the python keyword.
▶ Two modules are automatically imported:

• bb: to access bitbake’s internal functions.
• os: Python’s operating system interfaces.

▶ You can import other modules using the import keyword.
▶ Anonymous Python functions are executed during parsing.
▶ Short Python code snippets can be written inline with the ${@<python code>}

syntax.
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Accessing the datastore with Python

▶ The d variable is accessible within Python tasks.
▶ d represents the bitbake datastore (where variables are stored).

d.getVar("X", expand=False) Returns the value of X.
d.setVar("X", "value") Set X.
d.appendVar("X", "value") Append value to X.
d.prependVar("X", "value") Prepend value to X.
d.expand(expression) Expand variables in expression.
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Python code examples

# Anonymous function (automatically called at parsing time)
python __anonymous() {

if d.getVar("FOO", True) == "example":
d.setVar("BAR", "Hello, World.")

}
# Task
python do_settime() {

import time
d.setVar("TIME", time.strftime('%Y%m%d', time.gmtime()))

}

# Inline Python code
do_install() {

echo "Build OS: ${@os.uname()[0].lower()}"
}

Real life example of anonymous function:
https://github.com/linux4sam/meta-atmel/blob/kirkstone/recipes-kernel/linux/linux.inc
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Writing recipes - going further

Variable flags
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Variable flags

▶ Variable flags, or varflags, are used to store extra information on tasks and
variables.

▶ They are used to control task functionalities.
▶ A typical example:

SRC_URI[md5sum] = "97b2c3fb082241ab5c56ab728522622b"

▶ See the list of varflags supported by bitbake.
▶ More varflags can be added freely.
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Variable flags examples

▶ dirs: directories that should be created before the task runs. The last one
becomes the work directory for the task. Example: do_fetch in base.bbclass.

do_compile[dirs] = "${B}"

▶ noexec: disable the execution of the task.
do_settime[noexec] = "1"

▶ nostamp: do not create a stamp file when running the task. The task will always
be executed.
do_menuconfig[nostamp] = "1"

▶ doc: task documentation displayed by listtasks.
do_settime[doc] = "Set the current time in ${TIME}"

▶ depends: add a dependency between specific tasks
do_patch[depends] = "quilt-native:do_populate_sysroot"
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Writing recipes - going further

Packages features
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Benefits

▶ Features can be built depending on the needs.
▶ This allows to avoid compiling all features in a software component when only a

few are required.
▶ A good example is ConnMan: Bluetooth support is built only if there is Bluetooth

on the target.
▶ The PACKAGECONFIG variable is used to configure the build on a per feature

granularity, for packages.
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PACKAGECONFIG

▶ PACKAGECONFIG takes the list of features to enable.
▶ PACKAGECONFIG[<feature>] takes up to six arguments, separated by commas:

1. Argument used by the configuration task if the feature is enabled (EXTRA_OECONF).
2. Argument added to EXTRA_OECONF if the feature is disabled.
3. Additional build dependency (DEPENDS), if enabled.
4. Additional runtime dependency (RDEPENDS), if enabled.
5. Additional runtime recommendations (RRECOMMENDS), if enabled.
6. Any conflicting PACKAGECONFIG settings for this feature.

▶ Unused arguments can be omitted or left blank.
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Example: from ConnMan

PACKAGECONFIG ??= "wifi openvpn"

PACKAGECONFIG[wifi] = "--enable-wifi, \
--disable-wifi, \
wpa-supplicant, \
wpa-supplicant"

PACKAGECONFIG[bluez] = "--enable-bluetooth, \
--disable-bluetooth, \
bluez5, \
bluez5"

PACKAGECONFIG[openvpn] = "--enable-openvpn, \
--disable-openvpn, \
, \
openvpn"
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Enabling PACKAGECONFIG features

▶ In a .bbappend of the recipe, just append to PACKAGECONFIG

PACKAGECONFIG:append = " <feature>"
PACKAGECONFIG:append = " tui"

▶ In a config file (e.g. distro conf)

PACKAGECONFIG:append:pn-<recipename> = " <feature>"
PACKAGECONFIG:append:pn-gdb = " tui"
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Inspecting available PACKAGECONFIG flags
▶ ${POKY_DIR}/scripts/contrib/list-packageconfig-flags.py shows the

PACKAGECONFIG varflags available for each recipe:

$ ../poky/scripts/contrib/list-packageconfig-flags.py
RECIPE NAME PACKAGECONFIG FLAGS
==================================
alsa-plugins aaf jack libav maemo-plugin maemo-resource-manager pulseaudio samplerate speexdsp
connman 3g bluez client iptables l2tp nfc nftables openvpn pptp systemd tist vpnc wifi ...
gdb babeltrace debuginfod python readline tui xz
...

▶ The -a flag shows all the details:

$ ../poky/scripts/contrib/list-packageconfig-flags.py -a
connman-1.41
/home/murray/w/yocto-stm32-labs/poky/meta/recipes-connectivity/connman/connman_1.41.bb
PACKAGECONFIG wispr iptables client 3g wifi bluez
PACKAGECONFIG[wifi] --enable-wifi, --disable-wifi, wpa-supplicant, wpa-supplicant
PACKAGECONFIG[bluez] --enable-bluetooth, --disable-bluetooth, bluez5, bluez5
PACKAGECONFIG[openvpn] --enable-openvpn --with-openvpn=${sbindir}/openvpn,--disable-openvpn,,openvpn
...
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Writing recipes - going further

Conditional features
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Conditional features

▶ Some values can be set dynamically, thanks to a set of functions:
▶ bb.utils.contains(variable, checkval, trueval, falseval, d): if

checkval is found in variable, trueval is returned; otherwise falseval is used.
d is the BitBake datastore.

▶ bb.utils.filter(variable, checkvalues, d): returns all the words in the
variable that are present in the checkvalues.

▶ Example (meta/recipes-connectivity/connman/connman.inc):

PACKAGECONFIG ??= "wispr iptables client\
${@bb.utils.filter('DISTRO_FEATURES', '3g systemd', d)} \
${@bb.utils.contains('DISTRO_FEATURES', 'bluetooth', 'bluez', '', d)} \
${@bb.utils.contains('DISTRO_FEATURES', 'wifi', 'wifi ${WIRELESS_DAEMON}', '', d)} \

"
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Writing recipes - going further

Package splitting
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Package splitting
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Package splitting

▶ do_install copies all files in the D directory (${WORKDIR}/image).
▶ do_package splits files in several packages in ${WORKDIR}/packages-split

• based on the PACKAGES and FILES variables.
▶ do_package_write_rpm generates RPM packages
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PACKAGES

▶ PACKAGES lists the packages to be built:

PACKAGES = "${PN}-src ${PN}-dbg ${PN}-staticdev ${PN}-dev \
${PN}-doc ${PN}-locale ${PACKAGE_BEFORE_PN} ${PN}"

▶ More packages can be added to the default list
• Useful when a single remote repository provides multiple binaries or libraries.
• The order matters. PACKAGE_BEFORE_PN allows to pick files normally included in the

default package in another.
▶ PACKAGES_DYNAMIC allows to check dependencies with optional packages are

satisfied.
▶ ALLOW_EMPTY allows to produce a package even if it is empty.
▶ To prevent configuration files from being overwritten during the Package

Management System update process, use CONFFILES.
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FILES

▶ For each package a FILES variable lists the files to include.
▶ It must be package specific (e.g. with :${PN}, :${PN}-dev, dots).
▶ Defaults from meta/conf/bitbake.conf:

FILES:${PN}-dev = \
"${includedir} ${FILES_SOLIBSDEV} ${libdir}/*.la \
${libdir}/*.o ${libdir}/pkgconfig ${datadir}/pkgconfig \
${datadir}/aclocal ${base_libdir}/*.o \
${libdir}/${BPN}/*.la ${base_libdir}/*.la \
${libdir}/cmake ${datadir}/cmake"

FILES:${PN}-dbg = \
"/usr/lib/debug /usr/lib/debug-static \
/usr/src/debug"
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FILES: the main package

▶ The package named just ${PN} is the one that gets installed in the root filesystem.
▶ In Poky, defaults to:

FILES:${PN} = \
"${bindir}/* ${sbindir}/* ${libexecdir}/* ${libdir}/lib*${SOLIBS} \
${sysconfdir} ${sharedstatedir} ${localstatedir} \
${base_bindir}/* ${base_sbindir}/* \
${base_libdir}/*${SOLIBS} \
${base_prefix}/lib/udev/rules.d ${prefix}/lib/udev/rules.d \
${datadir}/${BPN} ${libdir}/${BPN}/* \
${datadir}/pixmaps ${datadir}/applications \
${datadir}/idl ${datadir}/omf ${datadir}/sounds \
${libdir}/bonobo/servers"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 258/325



Example

▶ The kexec tools provides kexec and kdump:

require kexec-tools.inc
export LDFLAGS = "-L${STAGING_LIBDIR}"
EXTRA_OECONF = " --with-zlib=yes"

SRC_URI[md5sum] = "b9f2a3ba0ba9c78625ee7a50532500d8"

PACKAGES =+ "kexec kdump"

FILES:kexec = "${sbindir}/kexec"
FILES:kdump = "${sbindir}/kdump"
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Inspecting packages
oe-pkgdata-util is a tool that can help inspecting packages:
▶ Which package is shipping a file:

$ oe-pkgdata-util find-path /bin/busybox
busybox: /bin/busybox

▶ Which files are shipped by a package:
$ oe-pkgdata-util list-pkg-files busybox
busybox:

/bin/busybox
/bin/busybox.nosuid
/bin/busybox.suid
/bin/sh

▶ Which recipe is creating a package:
$ oe-pkgdata-util lookup-recipe kdump
kexec-tools
$ oe-pkgdata-util lookup-recipe libtinfo5
ncurses
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Writing recipes - going further

Dependencies in detail
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DEPENDS

▶ DEPENDS describes a build-time dependency
▶ Typical case: a program needs the library and headers files from a library to be

configured and/or built
▶ In other words: it needs the library in its sysroot
▶ In ninvaders.bb, the line

DEPENDS = "ncurses"
creates a dependency

• Of ninvaders.do_prepare_recipe_sysroot
• On ncurses.do_populate_sysroot
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RDEPENDS

▶ RDEPENDS describes a runtime dependency
▶ Typical case: a program uses another program at runtime via sockets, DBUS, etc,

or simply executes it
▶ It does not need it at build time
▶ In inetutils_2.4.bb, the line

RDEPENDS:${PN}-ftpd += "xinetd"
creates a dependency

• Of inetutils.do_build
• On xinetd.do_package_write_rpm

▶ And adds in the inetutils-ftpd RPM package a dependency on the xinetd
RPM package
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RRECOMMENDS

▶ RRECOMMENDS is similar to RDEPENDS

▶ But if the dependency package is not built it will just be skipped instead of failing
the build

▶ Typical cases:
• A package extends the features of a program, but its build has been disabled

explicitly (e.g. via BAD_RECOMMENDATIONS)
• Depending on a kernel module that might also be built-in in the kernel Image

▶ In watchdog_5.16.bb, the line
RRECOMMENDS:${PN} += "kernel-module-softdog"
does nothing if the softdog kernel module is not built by the kernel (could be
builtin)
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Licensing

Licensing
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Licensing

Managing licenses
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Tracking license changes

▶ The license of an external project may change at some point.
▶ The LIC_FILES_CHKSUM tracks changes in the license files.
▶ If the license’s checksum changes, the build will fail.

• The recipe needs to be updated.

LIC_FILES_CHKSUM = " \
file://COPYING;md5=... \
file://src/file.c;beginline=3;endline=21;md5=..."

▶ LIC_FILES_CHKSUM is mandatory in every recipe, unless LICENSE is set to CLOSED.
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Package exclusion

▶ We may not want some packages due to their licenses.
▶ To exclude a specific license, use INCOMPATIBLE_LICENSE

▶ To exclude all GPLv3 packages:

INCOMPATIBLE_LICENSE = "GPL-3.0* LGPL-3.0* AGPL-3.0*"

▶ License names are the ones used in the LICENSE variable.
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Commercial licenses

▶ By default the build system does not include commercial components.
▶ Packages with a commercial component define:

LICENSE_FLAGS = "commercial"

▶ To build a package with a commercial component, the package must be in the
LICENSE_FLAGS_ACCEPTED variable.

▶ Example, gst-plugins-ugly:

LICENSE_FLAGS_ACCEPTED = "commercial_gst-plugins-ugly"
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Listing licenses

OpenEmbbedded will generate a manifest of all the licenses of the software present on
the target image in $BUILDDIR/tmp/deploy/licenses/<image>/license.manifest

PACKAGE NAME: busybox
PACKAGE VERSION: 1.31.1
RECIPE NAME: busybox
LICENSE: GPL-2.0-only & bzip2-1.0.4

PACKAGE NAME: dropbear
PACKAGE VERSION: 2019.78
RECIPE NAME: dropbear
LICENSE: MIT & BSD-3-Clause & BSD-2-Clause & PD

You can also include the manifest and individual licenses in the root filesystem:
▶ Either use COPY_LIC_DIRS = "1" and COPY_LIC_MANIFEST = "1"

▶ Or use LICENSE_CREATE_PACKAGE = "1" to generate and install packages
including the license files.
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Providing sources

OpenEmbbedded provides the archiver class to generate tarballs of the source code,
to meet the requirements of some licenses:
▶ Use INHERIT += "archiver"

▶ Set the ARCHIVER_MODE variable, the default is to provide patched sources. To
provide configured sources:

ARCHIVER_MODE[src] = "configured"
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Generating a Software Bill of Materials (SBoM)

Instead of generating license information and source tarballs separately,
OpenEmbedded can actually generate an SBoM, describing:
▶ Sources for target and host components
▶ Licenses of such components
▶ Dependencies between such components
▶ Applied changes, in particular fixes for known vulnerabilities.

This SBoM is generated in the standard SPDX format, which you can feed to tools
supporting SPDX.
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Usefulness of SPDX SBoM

SPDX SBoM can be attached to a software delivery, and used for:
▶ License compliance assessment
▶ Vulnerability assessment. You can use the SBoM to check whether your software

supply chain is impacted by currently known vulnerabilities, both in host and
target packages.

The US government is pushing for having such information in all software it procures
and will probably make it mandatory soon.
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How to create SPDX SBoM with OpenEmbedded

▶ Add INHERIT += "create-spdx" to your configuration file
▶ JSON SPDX files will be generated in tmp/deploy/images/MACHINE/
▶ You can then set optional variables:

• SPDX_PRETTY: Make generated files more human readable (newlines, indentation)
• SPDX_ARCHIVE_PACKAGED: Add compressed archives of the files in generated target

packages.
• SPDX_INCLUDE_SOURCES: Add descriptions of the source files for host tools and

target packages.
• SPDX_ARCHIVE_SOURCES: Add archives of these source files themselves (when

SPDX_INCLUDE_SOURCES is set).
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Example IMAGE-MACHINE.spdx.json output

{
"SPDXID": "SPDXRef-DOCUMENT",
"creationInfo": {

"comment": "This document was created by analyzing the source of the Yocto recipe during the build.",
"created": "2022-10-25T12:32:13Z",
"creators": [
"Tool: OpenEmbedded Core create-spdx.bbclass",
"Organization: OpenEmbedded ()",
"Person: N/A ()"
],
"licenseListVersion": "3.14"

},
"dataLicense": "CC0-1.0",
"documentNamespace": "http://spdx.org/spdxdoc/core-image-minimal-qemux86-64-20221025122556-f686f4f3-...",
"externalDocumentRefs": [

{
"checksum": {
"algorithm": "SHA1",
"checksumValue": "f6de08ea7fa026f480fd80cf7862a5c99c4d7a2b"
},
"externalDocumentId": "DocumentRef-base-files",
"spdxDocument": "http://spdx.org/spdxdoc/base-files-ee9424e3-1d7e-5739-b9cd-237a1a6f843f"
},

...
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SPDX output details
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Further resources about SPDX SBoM

▶ Yocto project documentation:
https://docs.yoctoproject.org/dev/dev-manual/sbom.html

▶ Joshua Watt: Automated SBoM generation with OpenEmbedded and the Yocto
Project (FOSDEM 2023)
https://youtu.be/Q5UQUM6zxVU

▶ SPDX project homepage:
https://spdx.dev
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The Yocto Project SDK

The Yocto Project SDK
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Overview

▶ An SDK (Software Development Kit) is a set of tools allowing the development of
applications for a given target (operating system, platform, environment, …).

▶ It generally provides a set of tools including:
• Compilers or cross-compilers.
• Linkers.
• Library headers.
• Debuggers.
• Custom utilities.
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The Yocto Project SDK

▶ The Poky reference system is used to generate images, by building many
applications and doing a lot of configuration work.

• When developing an application, we only care about the application itself.
• We want to be able to develop, test and debug easily.

▶ The Yocto Project SDK is an application development SDK, which can be
generated to provide a full environment compatible with the target.

▶ It includes a toolchain, libraries headers and all the needed tools.
▶ This SDK can be installed on any computer and is self-contained. The presence of

Poky is not required for the SDK to fully work.
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Available SDKs

▶ Two different SDKs can be generated:
• A generic SDK, including:

A toolchain.
Common tools.
A collection of basic libraries.

• An image-based SDK, including:
The generic SDK.
The sysroot matching the target root filesystem.

▶ The toolchain in the SDKs is self-contained (linked to an SDK embedded libc).
▶ The SDKs generated with Poky are distributed in the form of a shell script.
▶ Executing this script extracts the tools and sets up the environment.
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The generic SDK

▶ Mainly used for low-level development, where only the toolchain is needed:
• Bootloader development.
• Kernel development.

▶ The recipe meta-toolchain generates this SDK:
• bitbake meta-toolchain

▶ The generated script, containing all the tools for this SDK, is in:
• $BUILDDIR/tmp/deploy/sdk
• Example:

poky-glibc-x86_64-meta-toolchain-cortexa8hf-neon-toolchain-5.0.sh

▶ The SDK will be configured to be compatible with the specified MACHINE.
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The image-based SDK

▶ Used to develop applications running on the target.
▶ One task is dedicated to the process. The task behavior can vary between the

images.
• populate_sdk

▶ To generate an SDK for core-image-minimal:
• bitbake -c populate_sdk core-image-minimal

▶ The generated script, containing all the tools for this SDK, is in:
• $BUILDDIR/tmp/deploy/sdk
• Example:

poky-glibc-x86_64-core-image-minimal-cortexa8hf-neon-toolchain-5.0.sh

▶ The SDK will be configured to be compatible with the specified MACHINE.
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Adding packages to the SDK

▶ Two variables control what will be installed in the SDK:
• TOOLCHAIN_TARGET_TASK: List of target packages to be included in the SDK
• TOOLCHAIN_HOST_TASK: List of host packages to be included in the SDK

▶ Both can be appended to install more tools or libraries useful for development.
▶ Example: to have native curl on the SDK:

TOOLCHAIN_HOST_TASK:append = " nativesdk-curl"
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SDK format

▶ Both SDKs are distributed as bash scripts.
▶ These scripts self extract themselves to install the toolchains and the files they

provide.
▶ To install an SDK, retrieve the generated script and execute it.

• The script asks where to install the SDK. Defaults to /opt/poky/<version>
• Example: /opt/poky/5.0

$ ./poky-glibc-x86_64-meta-toolchain-cortexa8hf-neon-toolchain-5.0.sh
Poky (Yocto Project Reference Distro) SDK installer version 5.0
===============================================================
Enter target directory for SDK (default: /opt/poky/5.0):
You are about to install the SDK to "/opt/poky/5.0". Proceed[Y/n]?
Extracting SDK.................done
Setting it up...done
SDK has been successfully set up and is ready to be used.
Each time you wish to use the SDK in a new shell session, you need to source
the environment setup script e.g.
$ . /opt/poky/5.0/environment-setup-cortexa8hf-neon-poky-linux-gnueabi
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Use the SDK

▶ To use the SDK, a script is available to set up the environment:

$ cd /opt/poky/5.0
$ source ./environment-setup-cortexa8hf-neon-poky-linux-gnueabi

▶ The PATH is updated to take into account the binaries installed alongside the SDK.
▶ Environment variables are exported to help using the tools.
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SDK installation

environment-setup-cortexa8hf-neon-poky-linux-gnueabi Exports environment variables.
site-config-cortexa8hf-neon-poky-linux-gnueabi Variables used during the toolchain

creation
sysroots SDK binaries, headers and libraries. Contains one directory for the host

and one for the target.
version-cortexa8hf-neon-poky-linux-gnueabi Version information.
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SDK environment variables

▶ CC: Full path to the C compiler binary.
▶ CFLAGS: C flags, used by the C compiler.
▶ CXX: C++ compiler.
▶ CXXFLAGS: C++ flags, used by CPP

▶ LD: Linker.
▶ LDFLAGS: Link flags, used by the linker.
▶ ARCH: For kernel compilation.
▶ CROSS_COMPILE: For kernel compilation.
▶ GDB: SDK GNU Debugger.
▶ OBJDUMP: SDK objdump.

To see the full list, open the environment script.
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Examples

▶ To build an application for the target:

$ $CC -o example example.c

▶ The LDFLAGS variable is set to be used with the C compiler (gcc).
• When building the Linux kernel, unset this variable.

$ unset LDFLAGS
$ make menuconfig
$ make
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Practical lab - Create and use a Poky SDK

▶ Generate an SDK
▶ Compile an application for the target in the

SDK
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Devtool
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Overview

▶ Devtool is a set of utilities to ease the integration and the development of
OpenEmbedded recipes.

▶ It can be used to:
• Generate a recipe for a given upstream application.
• Modify an existing recipe and its associated sources.
• Upgrade an existing recipe to use a newer upstream application.

▶ Devtool adds a new layer, automatically managed, in $BUILDDIR/workspace/.
▶ It then adds or appends recipes to this layer so that the recipes point to a local

path for their sources. In $BUILDDIR/workspace/sources/.
• Local sources are managed by git.
• All modifications made locally should be commited.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 292/325



devtool usage 1/3

There are three ways of creating a new devtool project:
▶ To create a new recipe: devtool add <recipe> <fetchuri>

• Where recipe is the recipe’s name.
• fetchuri can be a local path or a remote uri.

▶ To modify the source for an existing recipe: devtool modify <recipe>
▶ To upgrade a given recipe: devtool upgrade -V <version> <recipe>

• Where version is the new version of the upstream application.
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devtool usage 2/3

Once a devtool project is started, commands can be issued:
▶ devtool edit-recipe <recipe>: edit recipe in a text editor (as defined by the

EDITOR environment variable).
▶ devtool build <recipe>: build the given recipe.
▶ devtool build-image <image>: build image with the additional devtool

recipes’ packages.
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devtool usage 3/3

▶ devtool deploy-target <recipe> <target>: upload the recipe’s packages on
target, which is a live running target with an SSH server running
(user@address).

▶ devtool update-recipe <recipe>: generate patches from git commits made
locally.

▶ devtool reset <recipe>: remove recipe from the control of devtool.
Standard layers and remote sources are used again as usual.
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Practical lab - Using devtool

▶ Generate a new recipe
▶ Modify a recipe to add a new patch
▶ Upgrade a recipe to a newer version
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Automating layer management

Automating layer
management
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Release management

There are multiple tasks that OE/bitbake based projects let you do on your own to
ensure build reproducibility:
▶ Code distribution and project setup.
▶ Release tagging

A separate tool is needed for that, usual solutions are:
▶ git submodules + setup script. Great example in YOE:

https://github.com/YoeDistro/yoe-distro

▶ repo and templateconf or setup script
▶ kas
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Google repo

▶ A good way to distribute a distribution (Poky, custom layers, BSP,
.templateconf…) is to use Google’s repo.

▶ Repo is used in Android to distribute its source code, which is split into many git
repositories. It’s a wrapper to handle several git repositories at once.

▶ The only requirement is to use git.
▶ The repo configuration is stored in a manifest file, usually available in its own

git repository.
▶ It could also be in a specific branch of your custom layer.
▶ It only handles fetching code, handling local.conf and bblayers.conf is done

separately
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Manifest example

<?xml version="1.0" encoding="UTF-8"?>
<manifest>

<remote name="yocto-project" fetch="git.yoctoproject.org" />
<remote name="private" fetch="git.example.net" />

<default revision="kirkstone" remote="private" />

<project name="poky" remote="yocto-project" />
<project name="meta-ti" remote="yocto-project" />
<project name="meta-custom" />
<project name="meta-custom-bsp" />
<project path="meta-custom-distro" name="distro">
<copyfile src="templateconf" dest="poky/.templateconf" />

</project>
</manifest>
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Retrieve the project using repo

$ mkdir my-project; cd my-project
$ repo init -u https://git.example.net/manifest.git
$ repo sync -j4

▶ repo init uses the default.xml manifest in the repository, unless specified
otherwise.

▶ You can see the full repo documentation at
https://source.android.com/source/using-repo.html.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 301/325

https://source.android.com/source/using-repo.html


repo: release

To tag a release, a few steps have to be taken:
▶ Optionally tag the custom layers
▶ For each project entry in the manifest, set the revision parameter to either a tag

or a commit hash.
▶ Commit and tag this version of the manifest.
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kas

▶ Specific tool developed by Siemens for OpenEmbedded:
https://github.com/siemens/kas

▶ Will fetch layers and build the image in a single command
▶ Uses a single JSON or YAML configuration file part of the custom layer
▶ Can generate and run inside a Docker container
▶ Can setup local.conf and bblayers.conf
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kas configuration

header:
version: 8

machine: mymachine
distro: mydistro
target:

- myimage

repos:
meta-custom:

bitbake:
url: "https://git.openembedded.org/bitbake"
refspec: "2.0"
layers:

.: excluded

openembedded-core:
url: "https://git.openembedded.org/openembedded-core"
refspec: kirkstone
layers:

meta:
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kas configuration

meta-freescale:
url: "https://github.com/Freescale/meta-freescale"
refspec: kirkstone

meta-openembedded:
url: https://git.openembedded.org/meta-openembedded
refspec: kirkstone
layers:

meta-oe:
meta-python:
meta-networking:

▶ Then a single command will build all the listed targets for the machine:
$ kas build meta-custom/mymachine.yaml

▶ Or, alternatively, invoke bitbake commands:
$ kas shell /path/to/kas-project.yml -c 'bitbake dosfsutils-native'
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Runtime Package Management

Runtime Package
Management
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Introduction

▶ BitBake always builds packages selected in IMAGE_INSTALL.
▶ The packages are used to generate the root filesystem.
▶ It is also possible to update the system at runtime using these packages, for many

use cases:
• In-field security updates.
• System updates over the wire.
• System, packages or configuration customization at runtime.
• Remote debugging.

▶ Using the Runtime Package Management is an optional feature.
▶ We’ll use the IPK package format as an example in the following slides.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 307/325

https://docs.yoctoproject.org/ref-manual/variables.html#term-IMAGE_INSTALL


Requirements

▶ First of all, you need a server to serve the packages to a private subnet or over the
Internet. Packages are typically served over https or http.

▶ Specific tools are also required on the target, and must be shipped on the
product. They should be included into the images generated by the build system.

▶ These tools will be specific to the package type used.
• This is similar to Linux distributions: Debian is using .deb related tools (dpkg,

apt…) while Fedora uses .rpm related ones (rpm, dnf).
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Runtime Package Management

Build configuration
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Build configuration 1/2

▶ The PACKAGE_CLASSES variable controls which package format to use. More than
one can be used.

▶ Valid values are package_rpm, package_deb, package_ipk.
▶ By default Poky uses the RPM format, while OpenEmbedded-Core uses the IPK

one.
▶ Example:

• PACKAGE_CLASSES = "package_ipk"
• PACKAGE_CLASSES = "package_rpm package_deb"
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Build configuration 2/2

To install the required tools on the target, there are two possible solutions:
▶ By adding package-management to the images features.

• The required tool will be installed on the target.
• The package database corresponding to the build will be installed as well.

▶ Or by manually adding the required tools in IMAGE_INSTALL. For example, to use
the IPK format we need opkg.
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Build considerations

▶ The Runtime Package Management uses package databases to store information
about available packages and their version.

▶ Whenever a build generates a new package or modifies an existing one, the
package database must be updated.

▶ $ bitbake package-index
▶ Be careful: BitBake does not properly schedule the package-index target. You

must use this target alone to have a consistent package database.
• $ bitbake ninvaders package-index won’t necessarily generate an updated

package database.
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Runtime Package Management

Package server configuration
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Apache2 example setup

Apache2 HTTP setup for IPK packages. This should go in
/etc/apache2/sites-enabled/package-server.conf.

<VirtualHost *:80>
ServerName packages.example.net

DocumentRoot /path/to/build/tmp/deploy/ipk
<Directory /path/to/build/tmp/deploy/ipk>

Options +Indexes
Options Indexes FollowSymLinks
Order allow,deny
allow from all
AllowOverride None
Require all granted

</Directory>
</VirtualHost>
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Runtime Package Management

Target configuration
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The IPK runtime management software

▶ The IPK runtime management software is opkg.
▶ It can be configured using configurations files ending in .conf in /etc/opkg/.
▶ This configuration helps opkg to find the package databases you want to use.
▶ For example, with our previously configured package server:

src/gz all http://packages.example.net/all
src/gz armv7a http://packages.example.net/armv7a
src/gz beaglebone http://packages.example.net/beaglebone

▶ This can be automatically generated by defining the PACKAGE_FEED_URIS,
PACKAGE_FEED_BASE_PATHS and PACKAGE_FEED_ARCHS variables
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opkg usage

▶ opkg update: fetch and update the package databases, from the remote package
servers.

▶ opkg list: list available packages.
▶ opkg upgrade: upgrade all installed packages.
▶ opkg upgrade <package>: upgrade one package explicitly.
▶ opkg install <package>: install a specific package.
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opkg upgrade over an unstable network

▶ To avoid upgrade issues when downloading packages from a remote package
server using an unstable connection, you can first download the packages and
then proceed with the upgrade.

▶ To do this we must use a cache, which can be defined in the opkg configuration
with: option cache /tmp/opkg-cache.

# opkg update
# opkg --download-only upgrade
# opkg upgrade
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Yocto Project Resources

Yocto Project Resources
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Yocto Project documentation

▶ https://docs.yoctoproject.org/

▶ Wiki: https://wiki.yoctoproject.org/wiki/Main_Page
▶ https://layers.openembedded.org/
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Useful Reading (1)

Embedded Linux Development Using Yocto Project - Third
Edition, April 2023
▶ https://www.packtpub.com/product/embedded-

linux-development-using-yocto-project-third-
edition

▶ By Daiane Angolini and Otavio Salvador
▶ From basic to advanced usage, helps writing better,

more flexible recipes. A good reference to jumpstart
your Yocto Project development.
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Useful Reading (2)

Embedded Linux Projects Using Yocto Project Cookbook -
Second Edition, January 2018
▶ https://www.packtpub.com/virtualization-and-

cloud/embedded-linux-development-using-yocto-
project-cookbook-second-edition

▶ By Alex González
▶ A set of recipes that you can refer to and solve your

immediate problems instead of reading it from cover to
cover.

See our review: https://bit.ly/1GgVmCB
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Last slide

Thank you!
And may the Source be with you
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Rights to copy

© Copyright 2004-2024, Bootlin
License: Creative Commons Attribution - Share Alike 3.0
https://creativecommons.org/licenses/by-sa/3.0/legalcode
You are free:

▶ to copy, distribute, display, and perform the work
▶ to make derivative works
▶ to make commercial use of the work

Under the following conditions:
▶ Attribution. You must give the original author credit.
▶ Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only

under a license identical to this one.
▶ For any reuse or distribution, you must make clear to others the license terms of this work.
▶ Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

Document sources: https://github.com/bootlin/training-materials/
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Extra slides

Quilt
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Overview

▶ Quilt is a utility to manage patches which can be used without having a clean
source tree.

▶ It can be used to create patches for recipes already available in the build system.
▶ Be careful when using this workflow: the modifications won’t persist across builds!
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Using Quilt

1. Find the recipe working directory in $BUILDDIR/tmp/work/.
2. Create a new Quilt patch: $ quilt new topic.patch

3. Add files to this patch: $ quilt add file0.c file1.c

4. Make the modifications by editing the files.
5. Test the modifications: $ bitbake -c compile -f recipe

6. Generate the patch file: $ quilt refresh

7. Move the generated patch into the recipe’s directory.
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